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1 Krawtchouk polynomials in one variable and the

binomial distribution

Krawtchouk polynomials may be defined via the generating

function

L+ AN (1= Aqv) = D 0" ka(j, N)
0<n<N
The polynomials k,, (j, N) are orthogonal with respect to

the binomial distribution with parameters IV, p.

[IThey are part of the legacy of Mikhail Kravchuk

N. Virchenko, et al., eds.
Development of the Mathematical Ideas of Mykhailo
Kravchuk (Krawtchouk),

Shevchenko Scientific Society, Kyiv-New York, 2004.

Krawtchouk polynomials appear in diverse areas of mathematics
and science. Applications range from coding theory to image

processing.
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Given a d X d matrix A, the action on the symmetric tensor
algebra of the underlying vector space defines its second

guantization or “symmetric representation”.

Introduce commuting variables x1, ..., xq. Map
Yi — E Az‘jl’j
J
We will use multi-indices, m = (ma,...,mgq), m; > 0,

similarly for n.

The induced map at level /N has matrix elements A,,,,

determined by the expansion
=yt eyt =Y Apma™ .
m

The matrix A is often called the induced matrix at level V.
The induced matrix maps monomials of homogeneous

degree /N to polynomials of homogeneous degree V.



We introduce the special matrix B which is a diagonal

matrix with multinomial coefficients as entries

|

n nilne! - -ngl
B is the diagonal of the induced matrix at level N of the
matrix consisting of all 1’s.

The level IV is implicit according to context.

If p is a diagonal matrix with entries p; > 0, > . p; = 1,
then the matrix

Bp
yields the probabilities for the corresponding

multinomial distribution.



The map A — A is at each level a multiplicative

homomorphism,

A1A2 = 14_11 1212 .

The main lemma is the relation between the induced matrix
of A with that of its transpose, A ' .

Transpose Lemma.

The induced matrices at each level satisfy

AT =B 1ATB.



3 Construction of Krawtchouk polynomial systems

Start with U, an orthogonal (unitary) matrix.

Make all entries of first column positive by taking out phases

and form the probability matrix thus

(U 30 \ (po \

\ Uio)  \ pa)

row and column indices running from O to d.

Define

1
A:%U\/ﬁ

where D is diagonal with all positive entries on the diagonal.

The essential property satisfied by A is

A'pA=D.



In any degree [V, the induced matrix A satisfies
ATpA=1D.
Using the Transpose Lemma
BAT =A"B
with B the special multinomial diagonal matrix yields
®Bpd' = BD
the Krawtchouk matrix ® being thus defined as AT,

The matrix elements, i. e. entries, of ® are the values of the

multivariate Krawtchouk polynomials thus determined.

The matrix BD is the diagonal matrix of squared norms
according to the orthogonality of the Krawtchouk polynomial

system.



4 Columns Theorem for symmetric powers

[1 MacMahon’s Master Theorem vyields the diagonal

matrix elements of the symmetric tensor powers. Namely,

Let U = diag(u1, ..., uq). Then, the coefficient of
u™ = ui" - ul'? inthe expansion of det (I — UA) ™! is the

diagonal matrix element A, m.

[1We present a variation that reproduces all of the matrix

elements.

Given a matrix A, with each column of A form a diagonal

matrix. Thus,
A; = diag ((Aij))
where

(Aj)ie = Aij -



O Columns Theorem.

For any matrix A, let Aj be the diagonal matrix formed from

column 7 of A. Let

A:ZUjAj .

Then the coefficient of v™ in the level N induced matrix A is

a diagonal matrix with entries the n'™ column of A.
Proof: Setting ¢y = AX, we have
Y = (Z ViAgi )T = Yy = (Z Appv™) 2™ .

A careful reading of the coefficients yields the result. ]

We may express this in the following useful way:

the diagonal entries of A are generating functions for the

matrix elements of A .



Define observables by
X;=A'AA.
Let X = ) v;X;. Then
AX = AA
and the symmetric tensor powers satisfy
AX = AA

the induced spectral formula for X.



e \Write, the superscript denoting the level N symmetric

tensor power,
(T+1Y X)W =) "M, (N) .

So &, (IN) is the sum of all elementary symmetric tensors

of order /N having exactly m factors not equal to the identity.
e For example, with a single X; = X,

§B)=XRIQTI+TIRXQT+TRI®X
the quantum random walk after three steps.

e Taking Ag = I, vg = 1, and t for the remaining v;’sin
the discussion above yields the spectral representation for
the quantum random walks and their extension to higher

levels.



Now take A corresponding to a Krawtchouk system, with
® =A'. Then

X'd=>0A
with X ' combining rows of ® resulting in multiplying the

entries of a given row according to the spectrum.

For n = 1, this is a recurrence formula for the
corresponding orthogonal polynomials. Namely, it shows the

effect of multiplying ¢,,,, say, by ¢1.

The higher powers of v yield higher-level recursion formulas.

They correspond to linearization formulas of the type

Onm = Y  Conr -



[] Gaussian quadrature Let {¢q, ..., ¢, } be an
orthogonal polynomial sequence with positive weight

function on an interval I of the real line. For Gaussian

[1%= Y wnsa)

I k

with . the zeros of ¢,, and appropriate weights w;,. Let
Aij = ¢i—1(z;)

Then, with 1" the diagonal matrix of squared norms,
L'y = i

guadrature,

2, we have

AWAT =T

where W is the diagonal matrix with W, = wy.



[] Association schemes Given an association scheme
with adjacency matrices A;, the P and () matrices
correspond to the decomposition of the algebra generated
by the A; into an orthogonal direct sum, the entries P@-j
being the corresponding eigenvalues. A basic result is the

relation

P'D,P=vD,

where D, is the diagonal matrix of multiplicities and D,, the

diagonal matrix of valencies of the scheme.

Work of Delsarte, Bannal, .. ..



JJ| Exanpl e

Start with the orthogonal matrix

1/vV2  1/4/2
1/vV2 —1/42
Factoring out the squares from the first column we have
1/2 0 1 1
p = and A =
0 1/2 1 -1

The binomial coefficient matrix is B = diag(1, 4, 6,4, 1).
We have the Kravchuk matrix

d=(ANT=16 0 -2 0 6

1
The entries of p become p = — I5 .

16



Take the second column of A and form the diagonal matrix

A =
0 -1

The corresponding observable is

X =A"T"MA=
1 0

LetA =71 +vA; and X =1+ v X;.
Then A4 = diag(
(1+U)47 (1+U)3(1_U)a (1+U)2(1_U)27 (1+U)(1_U)37 (1_U)4)

And X4 =

( 1 uy 6v? 43 ’04\
v 14+ 30° 3v + 3v3 3v? + 0t P
v 04+ 203 1 +4v2 +ot 204203 0?
v3 3v? + ot 3v + 3v? 1+ 302  w
Kv‘l 4o? 6v° 4v 1 )




Now we have the spectrum via the coefficient of v in AW
Spec = diag(4,2,0, —2, —4)

and the coefficient of ¢ in the transpose of X&) give the

recurrence coefficients

(001 0 0 0)
40 2 0 0
Rec=]10 3 0 3 O
00 2 0 4
\0 0 0 1 0

satisfying the relation
(Rec) ® = P (Spec)

which is essentially the recurrence relation for the

corresponding Krawtchouk polynomials.



6 Further aspects

[1We acknowledge the seminal paper of R. C. Griffiths

Orthogonal polynomials and multinomial distributions,

Australian J. Stat. 13(1971) 27-35.

[1As Bernoulli systems , systems of orthogonal
polynomials related to representations of the Heisenberg
algebra, sl(n), etc., with probabilistic interpretations relating

to exponential martingales of associated processes.



