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1 Matching polynomials

One-variable path
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Multi-variable path
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nc-function: φn is the sum of all nonconsecutive monomials

in the variables x1, x2, . . . , xn.

Reciprocal-Chebyshev 2nd kind: φn−1(x) =
X
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Cycle
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1 + x1 + x2 + x3 + x4 + x1x3 + x2x4

ncc-function: τn is the sum of all nonconsecutive, cyclic

monomials in the variables x1, x2, . . . , xn.

Reciprocal-Chebyshev 1st kind: τn(x) =
X
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Multi-variable cyclic path

1 2 3 4

x x x

4

x x x

5 6 7

1 2 3 1 2 3

1 + 2x1 + 2x2 + 2x3 + x2
1 + 2x1x2 + 3x1x3

+x2
2 + 2x2x3 + x2

3 + x2
1x3 + 2x1x2x3 + x1x
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This is the question



2 Recurrences and matrices

• nc-Recurrence

φn = φn−1 + xnφn−2

The nc-function φn satisfies this recurrence with I.C.’s

φ−1 = 1, φ0 = 1.

Denoting by fn and gn the fundamental solutions to this

recurrence, we have φn = fn + gn.

• Matrices

X = Xn =

(

gn−1 fn−1

gn fn

)

The ncc-function τn = gn−1 + fn is the trace of Xn.

The matrix factors as

X =

(

0 1

xn 1

)(

0 1

xn−1 1

)

· · ·
(

0 1

x1 1

)



2.1 Tau-Delta recurrence

Any matrix element ψN = 〈u, XN
v〉, u,v ∈ R

2,

satisfies the tau-Delta recurrence

ψN = τ ψN−1 − ∆ψN−2

where τ = trX and ∆ = detX = (−1)nx1x2 · · ·xn.

• First fundamental solution

GN =

⌊N/2⌋
∑

k=0

(

N − k

k

)

τN−2k(−∆)k

• Generating function

1

det(I − tX)
=

∞
∑

N=0

tN GN

Powers of X correspond to cyclic repetition of the initial

path with n edges.



3 Second quantization and trace formulas

• Symmetric representation of a d× d matrix A

With u = (u1, . . . , ud)
T , v = (v1, . . . , vd)

T ,

v = Au

For given homogeneous degreeN , define

matrix elements by

vm1

1 · · · vmd

d =
∑

n1,...,nd

〈

m1, . . . ,md

n1, . . . , nd

〉

A

un1

1 · · ·und

d

v
m =

∑

n

〈

m

n

〉

A
u

n

This is a representation of the multiplicative semigroup of

matrices. In other words, we have the

• Homomorphism property

〈

m

n

〉

AB
=

∑

k

〈

m

k

〉

A

〈

k

n

〉

B



3.1 Symmetric traces

• The action defined here on polynomials is equivalent to

the action on symmetric tensor powers, as in classical

invariant theory. See Fulton and Harris

[Representation theory, a first course, pp. 472-5].

• boson Fock space over the d-dimensional vector space

is the space of symmetric tensor powers.

• Symmetric trace: for fixed homogeneous degreeN the

symmetric trace of A in degreeN

trN
Sym(A) =

∑

|m|=N

〈

m

m

〉

A

• Symmetric trace theorem

(See Springer [Invariant theory, LNM 585, pp. 51-2].)

1

det(I − tA)
=

∞
∑

N=0

tN trN
Sym(A).



• Tau-Delta recurrence revisited

For GN , the first fundamental solution to the τ -∆

recurrence, the Symmetric Trace Theorem says

GN = trN
Sym(X) =

∑

|m|=N

〈

m

m

〉

X

=
∑

|m|=N

〈

m

m

〉

ξnξn−1···ξ1

By the Homomorphism Property, we calculate the matrix

elements for each factor ξi.

• Matrix elements for ξi =

(

0 1

xi ai

)

. The mapping

induced on polynomials is

v1 = u2 , v2 = xi u1 + ai u2

And we find, for fixed homogeneous degreeN ,

〈m

n

〉

ξi

=

(

N −m

n

)

xn
i a

N−m−n
i



4 Cyclic binomial identity

GN

=
∑

k1,...,kn

(

N − k2

k1

)(

N − k3

k2

)

· · ·
(

N − kn

kn−1

)(

N − k1

kn

)

× xk1

1 · · ·xkn

n aN−k1−k2

1 aN−k2−k3

2 · · ·aN−kn−k1

n

= ∆N/2UN

(

τ

2
√

∆

)

=

⌊N/2⌋
∑

k=0

(

N − k

k

)

τN−2k(−∆)k

=
∑

m,k

(

m

k

)(

N −m

m− k

)

fN−2m+k
n gk

n−1(fn−1gn)m−k

where UN denotes the Chebyshev polynomial of the second

kind.

Recall fn and gn are the fundamental solutions to the initial

n-step recurrence.



5 Comments

• Special functions interest

n=2 finite 2F1 summation or Chu-Vandermonde sum

n=3 gives 3F2 Pfaff-Saalschütz sum

n≥4 gives a multivariate summation formula that requires

further investigation

• Matching polynomials

GN + (φn − τn)GN−1 is the matching polynomial for the

N -fold repeated path of length n

2 ∆N/2 TN

(

τ

2
√

∆

)

is for the corresponding cycle.

Formulas for trees.



6 Conclusion

• Second quantization of a recurrence which is the

periodic extension [constant coefficients] of a given

recurrence [non-constant coefficients] yields identities in the

underlying variables by interpreting the fundamental solution

in various ways.

• Hierarchy of hierarchies of identities since for fixed r,

an r-step recurrence gives a hierarchy of identities.

Now vary r.

• Relation with mathematical objects such as multivariate

Chebyshev polynomials?


