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1 Introduction

0 Krawtchouk polynomials appear in a variety of contexts,
most notably as orthogonal polynomials with respect to the

binomial distribution.

e Krawtchouk transform on vectors.

e Algorithm for the Krawtchouk transform on vectors.

e Krawtchouk expansions of functions.

e Operator calculus formulation  for the coefficients of

Krawtchouk expansions.

e Applications of Krawtchouk transforms.



2  Krawtchouk Polynomials, Kravchuk Matrices

One may view Kravchuk matrices as an extension of the
binomial coefficients. Consider the “degree-two algebraic

rules” and translate them into a “second-degree Kravchuk

matrix”:
(a+b)?> = a®+ 2ab+ b
(a+b)(a—b) = a? — b?
(@ —b)? = a®— 2ab+ b

read off

11 1
K® =12 o -2
1 -1 1

The expansion coefficients make up the columns of the

matrix.



e The entries are determined by the expansion:

N
G(vij, N)=(1+0)V 7T (1-v) =) K"
1=0

e Expanding gives the explicit values of the matrix entries:

Ki(j,N) = K} =Y (=1)F (2) (jj—_lg

k

where matrix indices run from O to /V.



[ 1 Here are the Kravchuk matrices of orders zero, one, and

three:

KO =11 ]
|1
1 1

1 1 1 1
3 1 -1 -3
3 —1 -1 3




3 Interpretations

e As polynomials in 7 they are orthogonal with respect to
the binomial distribution, ().

® These correspond to functionals of a random walk moving

11 with equal probabilities.

e Transforms of vectors correspond to expansions via

matrices.

e Transforms of functions correspond to expansions in

terms of polynomials.



O Multiplying on the right by K gives the transform of

f=(f(0),f(1),...,f(IN)). Multiply again by K using
K? = 2N T to get the inverse transform.

A

f=fK imples f=2N"fK

e Explicitly, this is the expansion of the vector f in terms of

Krawtchouk polynomials in the variable j.

fGy=27" Z f(i) K;(j, N)

e \We have developed an algorithm for carrying out the

transform.



0 Given N > 0. Do the following forn = 0 to N :

[1Step 0. Given a row vector of length NV + 1.

[1Step n. You have n current rows.
Form 1 new rows by summing adjacent values.
Form the n + 15% row by differencing adjacent values of the
h
r

current ' row.

e At step n, you have n + 1 rows and N 4+ 1 — n columns.

e After step [V, you have a single column of /N + 1 values.

Transposed it is the Krawtchouk transform of the original row.

0 Take the column that resulted from applying the
algorithm as your new row. Apply the algorithm again.

Divide the result by 2N and you recover your original values.



77| Exanpl es

e Let N = 3. Start with 4, 2, 0, —3. Then we have

] _ C 7
8§ —1
6 2 —3 9
4 2 0 -3]= =4 5| =
2 2 3 —1
|0 —1 )

e Start with a row of K(N), you get 2N times a vector with

1 in the corresponding spot.

3 1 -1 =3]=2°[0 1 0 0]

n
® Take a vector that starts with a binomial row, ( ) .
)

Multiply on the left by K (N) it produces 2" times a

binomial row with index N — n.

K®[1 33100'=22[12100 0]



In the random walk interpretation, 7 is the number of jumps

to the left. The position x = N — 2.

® The generating function for functions of x is

X — X /Un
(L4+0)NHI2 (1= ) N=0/2 = 37— K (2, N)

n>0

e A polynomial function of x of degree at most /V has an

expansion

fl@)= > f(n)Ky(z,N)

0<n<N

e The coefficient f(n) has the operator calculus expression

F(n) = % (cosh D)N—"(sinh D)™ £(0)

where e*P f(x) = f(x % 1), shift operators on functions

of x.



We can use the matrix of the operator D acting on the
powers of x for symbolic calculation. Since D is nilpotent
acting on polynomials in &, the exponentials reduce to finite

sums. For example, take N = 4.

01 0 0 0
00 2 0 0
D=|1000 3 0
00 0 0 4
000 0 0]

We have cosh D and tanh D respectively:

‘1 0101] o010 -2 0]
010 3 0 002 0 -8
001 06|,]000 3 0
000 1 0 000 0 4

' 00001| 000 0 0



77| Exanple

For N=4, let f(z) = a* + 223 — 2% + 5.
We find, with N = 4, that

f=K4+2K3+ 15Ky + 25K + 36
where Ky = 1,

K==z, Ks =23 — 102

Ky = 2% — 4, K, = x* — 1622 4+ 24

This is obtained by multiplying the column of coefficients of
f(x) by the matrix Y formed by the top rows of
(cosh™ D)(tanh™ D)/nl, for 0 < n < N, which are

readily computed iteratively. In this example we have

0 40

1 0 4

0O 1 0 10 O
Y=10 01 0 16

0O 0 0 1 O

00 0 0 1




e General p, q. Polynomials with parameters p and ¢q arise
from Bernoulli trials where the probability of success is p,
with ¢ = 1 — p. They arise as well when working over finite

fields, in which case ¢ is the number of elements of the field.

e Multivariate polynomials are orthogonal with respect to
corresponding multinomial distributions. Functions of several

variables correspond to random walks in higher dimensions.

® Positivity results hold for transforms of polynomial

functions.

e Variety of applications is seen in the references.
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