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1 Introduction

➨ Krawtchouk polynomials appear in a variety of contexts,

most notably as orthogonal polynomials with respect to the

binomial distribution.

• Krawtchouk transform on vectors.

• Algorithm for the Krawtchouk transform on vectors.

• Krawtchouk expansions of functions.

• Operator calculus formulation for the coefficients of

Krawtchouk expansions.

• Applications of Krawtchouk transforms.



2 Krawtchouk Polynomials, Kravchuk Matrices

One may view Kravchuk matrices as an extension of the

binomial coefficients. Consider the “degree-two algebraic

rules” and translate them into a “second-degree Kravchuk

matrix”:

(a+ b)2 = a2 + 2ab+ b2

(a+ b)(a− b) = a2 − b2

(a− b)2 = a2 − 2ab+ b2

read off

K(2) =









1 1 1

2 0 −2

1 −1 1









The expansion coefficients make up the columns of the

matrix.



2.1 Generating function

• The entries are determined by the expansion:

G(v; j,N) = (1 + v)N−j (1− v)j =
N
∑

i=0

viK
(N)
ij

• Expanding gives the explicit values of the matrix entries:

Ki(j,N) = K
(N)
ij =

∑

k

(−1)k
(

j

k

)(

N − j

i− k

)

where matrix indices run from 0 to N .



➧ Here are the Kravchuk matrices of orders zero, one, and

three:

K(0) =
[

1
]

K(1) =





1 1

1 −1





K(3) =















1 1 1 1

3 1 −1 −3

3 −1 −1 3

1 −1 1 −1

















3 Interpretations

• As polynomials in j they are orthogonal with respect to

the binomial distribution,
(

N
j

)

.

• These correspond to functionals of a random walk moving

±1 with equal probabilities.

• Transforms of vectors correspond to expansions via

matrices.

• Transforms of functions correspond to expansions in

terms of polynomials.



4 Transform on Vectors

➨ Multiplying on the right by K gives the transform of

f = (f(0), f(1), . . . , f(N)). Multiply again by K using

K2 = 2N I to get the inverse transform.

f̂ = f K implies f = 2−N
f̂ K

• Explicitly, this is the expansion of the vector f in terms of

Krawtchouk polynomials in the variable j.

f(j) = 2−N
∑

i

f̂(i)Ki(j,N)

• We have developed an algorithm for carrying out the

transform.



4.1 Algorithm

➨ Given N > 0. Do the following for n = 0 to N :

➧ Step 0. Given a row vector of length N + 1.

➧ Step n. You have n current rows.

Form n new rows by summing adjacent values.

Form the n+ 1st row by differencing adjacent values of the

current nth row.

• At step n, you have n+ 1 rows and N + 1− n columns.

• After step N , you have a single column of N + 1 values.

Transposed it is the Krawtchouk transform of the original row.

➨ Take the column that resulted from applying the

algorithm as your new row. Apply the algorithm again.

Divide the result by 2N and you recover your original values.



� Examples

• Let N = 3. Start with 4, 2, 0,−3. Then we have

[ 4 2 0 −3 ] ⇒

[

6 2 −3

2 2 3

]

⇒





8 −1

4 5

0 −1



 ⇒









7

9

−1

1









• Start with a row of K(N), you get 2N times a vector with

1 in the corresponding spot.

[ 3 1 −1 −3 ] ⇒ 23 [ 0 1 0 0 ]

• Take a vector that starts with a binomial row,

(

n

i

)

.

Multiply on the left by K(N). It produces 2n times a

binomial row with index N − n.

K(5) [ 1 3 3 1 0 0 ]
t
= 23 [ 1 2 1 0 0 0 ]

t



5 Expansions of Functions

In the random walk interpretation, j is the number of jumps

to the left. The position x = N − 2j.

• The generating function for functions of x is

(1 + v)(N+x)/2 (1− v)(N−x)/2 =
∑

n≥0

vn

n!
Kn(x,N)

• A polynomial function of x of degree at most N has an

expansion

f(x) =
∑

0≤n≤N

f̃(n)Kn(x,N)

• The coefficient f̃(n) has the operator calculus expression

f̃(n) =
1

n!
(coshD)N−n(sinhD)nf(0)

where e±Df(x) = f(x± 1), shift operators on functions

of x.



5.1 Operator calculus via Matrices

We can use the matrix of the operator D acting on the

powers of x for symbolic calculation. Since D is nilpotent

acting on polynomials in x, the exponentials reduce to finite

sums. For example, take N = 4.

D̂ =





















0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0





















We have cosh D̂ and tanh D̂ respectively:




















1 0 1 0 1

0 1 0 3 0

0 0 1 0 6

0 0 0 1 0

0 0 0 0 1





















,





















0 1 0 −2 0

0 0 2 0 −8

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0























� Example

For N=4, let f(x) = x4 + 2x3 − x2 + 5x.

We find, with N = 4, that

f = K4 + 2K3 + 15K2 + 25K1 + 36

where K0 = 1,

K1 = x, K3 = x3 − 10x

K2 = x2 − 4, K4 = x4 − 16x2 + 24

This is obtained by multiplying the column of coefficients of

f(x) by the matrix Y formed by the top rows of

(coshN D̂)(tanhn D̂)/n!, for 0 ≤ n ≤ N , which are

readily computed iteratively. In this example we have

Y =





















1 0 4 0 40

0 1 0 10 0

0 0 1 0 16

0 0 0 1 0

0 0 0 0 1























6 Further aspects

• General p, q. Polynomials with parameters p and q arise

from Bernoulli trials where the probability of success is p,

with q = 1− p. They arise as well when working over finite

fields, in which case q is the number of elements of the field.

• Multivariate polynomials are orthogonal with respect to

corresponding multinomial distributions. Functions of several

variables correspond to random walks in higher dimensions.

• Positivity results hold for transforms of polynomial

functions.

• Variety of applications is seen in the references.
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