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t. A new aggregation algorithm for 
omputing the stationary distribution ofa large Markov 
hain is proposed. This algorithm is attra
tive when the state spa
e ofMarkov 
hain is large enough so that the dire
t and iterative methods are ineÆ
ient. Itis based on grouping the states of a Markov 
hain in su
h a way that the probability of
hanging the state inside the group is of greater order of magnitude than intera
tionsbetween groups. The 
orre
tness of the 
ombinatorial aggregation is justi�ed by themethod of forest expansions developed re
ently in [14, 15℄. In 
ontrast to existing meth-ods our approa
h is based on 
ombinatorial and graph-theoreti
 framework and 
an beseen as an algorithmization of famous Matrix Tree Theorem. The general method isillustrated by an example of 
omputing the stationary distribution. We establish alsosome preliminary results on the 
omplexity of our algorithm. Numeri
al experimentson several ben
hmark examples show the potential appli
ability of the algorithm inreal life problems.1 Introdu
tionWhen 
onsidering 
omplex systems, e.g. 
ommuni
ation networks, the usual way to 
omputetheir important parameters (like throughput) is to study a probabilisti
 markovian modelinstead of the system itself. The usual task is to 
ompute some of its 
hara
teristi
s (likestationary distribution), 
orresponding to the parameters of a modeled system. To this aiman appropriate system of linear equation must be solved.Our attention is restri
ted to �nite dis
rete-time Markov 
hains (although presented ap-proa
h is valid also for 
ontinuous time). Su
h a Markov 
hain over a state spa
e S is usuallyrepresented by a transition probability matrix P of order n, where n is the number ofstates in S. The (i; j)-th element of P, denoted pi;j , is the one-step transition probability ofgoing from state i to state j.In what follows, boldfa
e 
apital letters (e.g. P) denote matri
es, boldfa
e lower
ase letters(e.g. ���) denote 
olumn ve
tors, itali
 lower
ase and upper
ase letters (e.g. a) denote s
alarsand itali
 letters (e.g. S) denote sets.? This work was partially supported by the KBN grant 8 T11C 039 15



For a transition probability matrix P, any ve
tor ��� satisfying���T = ���TP; Xi2S �i = jj���jj1 = 1; (1)is 
alled a stationary probability distribution 
f. [11, 13℄. Besides stationary distribution,some other 
hara
teristi
s of a Markov 
hain are also of interest, su
h as �rst-passage timebetween states or the number of visits in a �xed state before absorption. To 
ompute them,one has also to solve a system of linear equations similar to (1).The most elegant way to deal with (1) is to �nd the analyti
al formulas for the solution ofthe system. Unfortunately, it is usually impossible and the only way is to solve the problemnumeri
ally [18℄. Problems arise from the 
omputational point of view be
ause of the largenumber of states whi
h systems may o

upy. It is not un
ommon for thousands of states tobe generated even for simple appli
ations. On the other hand these Markov 
hains are oftensparse and possess spe
i�
 stru
ture.Example To illustrate the appli
ations of Markov 
hains let us 
onsider a simple modelof an intera
tive 
omputer system. Figure 1 represents the ar
hite
ture of a time-shared,paged, virtual memory 
omputer. This model was widely studied in the literature [4, 18℄; itis 
onsidered again in more detail in Appendix. The system 
onsists of: a set of terminalsfrom whi
h users generate 
ommands; a 
entral pro
essing unit (CPU); a se
ondary memorydevi
e (SM); an I/O devi
e (I/O). A queue of requests is asso
iated with ea
h devi
e and
     Terminals

CPU

SM

I/OFig. 1. Illustration for Intera
tive Computer Systemthe s
heduling is assumed to be FCFS (First Come First Served). When the 
ommand isgenerated, the user at the terminal remains ina
tive until the system responds. Symboli
ally,a user having generated a 
ommand enters the CPU queue. The behavior of the pro
ess in thesystem is 
hara
terized by a 
omputing time followed by a page fault, after whi
h the pro
essenters the SM queue, or an input/output (�le request), in whi
h 
ase the pro
ess enters theI/O queue. Pro
esses whi
h terminate their servi
e at SM or I/O queue return to the CPUqueue. Completion of a 
ommand is represented by a departure of the pro
ess from the CPUto the terminals.States of the Markov 
hain 
orresponding to our model are determined by numbers ofpro
esses in all queues: i. e. S = f(x; y; z) 2 N3 : x+ y+ z � ng for n users; three 
oordinates
orrespond to the number of pro
esses in three queues. The state spa
e is large but sparse insense of 
onne
tions; there are maximum 6 transitions going out from any state, 
orrespondingto entering or exiting a queue by a pro
ess.



Related resear
h A lot of resear
h has been done 
on
erning the numeri
al solutions of somelinear equations that o

ur when one studies Markov 
hains (see for example [4, 18℄). Almostall methods for solving a system of linear equations are adapted into this 
ontext: iterativeand dire
t methods, proje
tion te
hniques and the 
on
ept of pre
onditioning (see [19℄). Theappli
ability of a method depends strongly on the stru
ture of a Markov 
hain 
onsidered.For solving the 
hain of medium size, dire
t methods 
ould be applied. In Se
tion 3the GTH (Grassmann-Taksar-Heyman [9℄) algorithm whi
h is a modi�
ation of the standardGaussian elimination, is adopted for dealing with small subsystems arising from de
ompositionof large Markov 
hain.When the state spa
e of the 
hain is large, even if it has sparse stru
ture, for most of dire
tsolving methods, elimination of one nonzero element of the matrix, produ
e several nonzeroelements in positions whi
h previously 
ontained zero. This negative phenomenon is 
alled�ll-in and the amount of it 
an be so extensive that available memory is qui
kly exhausted.To avoid immense �ll-in iterative methods 
an be used, as in that 
ase, the only operationin whi
h the matri
es are involved are multipli
ations by one or more ve
tors. These operationsdo not alter the form of the matrix. For these reason, iterative methods (su
h as Gauss-Seideliteration or Su

essive Overrelaxation) have traditionally been preferred to dire
t methods.On the other hand, a major disadvantage of iterative methods is a very long time oftenrequired for 
onvergen
e to the desired solution (see dis
ussion in [18, 19℄ and the referen
estherein). In the 
ase of dire
t methods the upper bound on the time required to obtain thesolution may be determined a priori.In this paper we fo
us on nearly un
oupled or nearly 
ompletely de
omposable Markov
hains (see [2, 5, 18℄). Su
h 
hains often arise in queueing network analysis, large s
ale e
o-nomi
 modeling and 
omputer systems performan
e evaluation. The state spa
e of these
hains 
an be naturally divided into groups of states su
h that transitions between states be-longing to di�erent groups are signi�
antly less likely than transitions between states withinthe same group.For solving nearly un
oupled Markov 
hains, a family of methods has been proposed.They are jointly 
lassi�ed as iterative aggregation/disaggregation [12℄ methods, and based ona de
ompositional approa
h. The idea follows well known divide and 
onquer prin
iple | ifthe model is too large or 
omplex to analyze, it is divided into separate subproblems. Ideally,subproblems 
an be solved independently and the global solution is obtained by \merging"the subproblem solutions together.Our 
ombinatorial aggregation approa
h 
an be seen as a generalization of existing aggre-gation algorithms. The most important advantages over previous methods are:{ The presented algorithm uses 
ombinatorial properties of dire
ted forests in the underly-ing graph of a Markov 
hain. Combinatorial and graph-theoreti
 approa
h simpli�es thedes
ription of algorithm and proof of 
orre
tness whi
h relies on 
ertain fa
ts about forestexpansions of solutions of linear equation systems. These fa
ts are formulated in MatrixTree Theorem and extensions of it proved in [1, 14℄.{ The appli
ability of traditional aggregation methods is restri
ted to Markov 
hains witha regular NCD stru
ture1; in parti
ular, the existen
e of asymptoti
ally transient states(i.e., those states with the outgoing probability of a bigger order of magnitude than theingoing probability) are problemati
 (su
h states are very 
ommon in large Markov 
hainresulting from pra
ti
al examples). Algorithms derived from our method work 
orre
tlywhen su
h states are present.1 See 
onditions 6:1� 6:4 in [18℄ pp. 335.



{ All known aggregation methods 
onsidered in the literature are designed only to solvethe problem of stationary distribution, and other 
hara
teristi
s of Markov 
hain arenegle
ted. In 
ontrast to this, our approa
h o�ers possibility of designing pro
edures forother 
hara
teristi
s too.Stru
ture of the paper In Se
tion 2 a mathemati
al theory behind the algorithms issket
hed (see [14, 15℄ for more detailed treatement). The following se
tion 
ontains algorithmthemselves. The 
omplexity analysis and several 
ase studies 
an be �nd in Se
tion 4. InAppendix we report results of experiments we have performed | they are very promisingand 
learly justify the appli
ability of the algorithm in pra
ti
al problems.2 Dire
ted forests methodConsider a dire
ted graph G = (S;E); let the set of verti
es (
alled also states) S =f1; 2; : : : sg, for some s � 1. The 
lassi�
ation of states in a graph follows the Markov 
hainterminology (see [11, 13℄ for a detailed treatment of Markov 
hain theory). State j is rea
hablefrom state i if there exists a path leading from i to j (we use the short notation i ! j). Astate i is 
alled re
urrent if, for any state j, i ! j implies j ! i; otherwise, i is 
alledtransient. The Markov 
hain and its graph are 
alled irredu
ible. when i ! j and j ! ifor all states i; j.A strong 
omponent of G is any maximal subgraph C of G, with the property that i! jfor any two states i; j of C. A strong 
omponent is absorbing if it has no outgoing edges.Strong absorbing 
omponents are also 
alled 
losed 
lasses in the sequel. An underlyinggraph of ea
h Markov 
hain has at least one strong absorbing 
omponent.An a
y
li
 subgraph f = (S;Ef ) of G 
ontaining all its verti
es, in whi
h any state hasout-degree at most 1 is 
alled a dire
ted spanning forest. A set of states R � S withno outgoing edges in Ef forms a root of a forest. When the root is singleton we talk aboutdire
ted spanning tree. We write shortly forest (tree) instead of dire
ted spanning forest(tree).Let FG(R) denote the set of all forests in G having the root R (a forest is identi�ed withthe set of its edges). We will omit the subs
ript G when it is obvious from the 
ontext. Forreadability, if R = fi1; i2; : : : img we use the notation F(i1; : : : im) instead of F(R). For �xedi =2 R and j 2 R, Fij(R) � F(R) denotes the set of all forests with the root R, 
ontaining apath from i to j.Now we enri
h dire
ted graphs with weights, 
orresponding to the probability of 
hangingthe state in a Markov 
hain. A square matrix A of size s with elements from R indu
es agraph G(A) with states f1; 2; : : : ; sg and edges between all pairs (i; j) with aij 6= 0. In G(A)we de�ne the (multipli
ative) weight of a forest f = (S;Ef ) asw(f) = Y(i;j)2Ef (�aij)and the weight of a set F of forests is de�ned byw(F) = Xf2F w(f):For 
ompleteness, we put w((S; ;)) := 1 (empty forest) and w(;) := 0 (empty set of forests).



It was observed that many fa
ts are valid simultaneously for both dis
rete and 
ontinuoustime Markov 
hains. To deal with them at the same time we use, following [14℄, a lapla
ianmatrix, i.e. matrix L = (lij)si;j=1, lij 2 R satisfying lii = �Pj: j 6=i lij for i = 1; : : : ; s. Denoteby I the identity matrix of size s. Let P be the transition probability matrix of a Markov
hain. It is easy to verify that matrix L = I � P is a lapla
ian matrix indu
ed by P. Fromnow on, we assume that the Markov 
hain is introdu
ed by the Markov 
hain lapla
ianmatrix ,i. e., lapla
ian matrix with non-positive real o�-diagonal entries. Su
h matri
es areknown in graph theory and 
ombinatori
s (see dis
ussion in [14℄ and the referen
es therein).For U;W � S and a square matrix A of size s, let us denote by A(U ��W ) the submatrixof A resulting from deletion of rows and 
olumns indexed by U and W respe
tively. Forthe simpli
ity of notation we write Aij instead of A(fig��fjg). Let es and 0s denote 
olumnve
tors with ea
h 
omponent equal to 1 and 0, respe
tively.Many 
hara
teristi
s of Markov 
hains are solutions of systems of linear equations of thefollowing form2: LT (R��R)x = b; (2)whereR is a subset of states and b is a nonnegative ve
tor of size s�jRj; LT denotes transposedmatrix. As an example of (2), 
onsider 
omputing the stationary distribution. By (1), thestationary distribution of a Markov 
hain de�ned by a lapla
ian matrix L = (lij)si;j=1 is anonnegative, normalized ve
tor ��� = (�1; : : : ; �s)T , being the solution of following system:���TL = 0Ts : (3)Assuming for simpli
ity that the states numbering implies �s > 0, one of possible ways ofsolving (3) is to 
ompute the solution x of a system of the form (2):LssTx = �(l11; : : : ; l1s�1)T (4)and then to normalize the ve
tor (xT ; 1). On the other hand solving system (2) 
an be redu
edto 
omputing the solution of (3) for appropriately de�ned lapla
ian L.We express the solution of a system of linear equations as a rational fun
tion of dire
tedforest weights (
alled the forest expansion) 
f. [14℄. For stationary distribution this is for-mulated in the following theorem (proved independently by many authors, among them [7,16℄):Theorem 1 (Markov 
hain tree theorem). If the underlying graph of a Markov 
hainhas exa
tly one absorbing strong 
omponent, then the stationary distribution is given by:�i = w(F(i))Pj2S w(F(j)) , for i = 1; : : : s;Nearly 
ompletely de
omposable (NCD) Markov 
hains (see [2, 5, 18℄) are de�nedby lapla
ian matri
es that 
an be ordered so that the matrix has a blo
k stru
ture in whi
hthe nonzero elements of the o�-diagonal blo
ks are small 
ompared with those of the diagonalblo
ks. Su
h matri
es often arise in queueing network analysis, large s
ale e
onomi
 modelsand 
omputer systems performan
e evaluation.2 Our method 
an be also adapted for a non-transposed 
ase L(R��R)x = b; this result is to bereported elsewhere.



In the literature one 
an �nd some generalizations of NCD Markov 
hains, aiming inexpressing several di�erent orders of magnitude of intera
tion strength (see for example [10℄).In [14℄ a wide 
lass of Markov 
hains has been de�ned, subsuming previously known 
lasses.For given fun
tions A;B : R ! R, the notation A(") � B(") means that:lim"!0 A(")B(") = 1:We also set A(") � 0, if there exists "1 6= 0 su
h that for any " 2 (�"1; "1), A(") = 0.A family fL(") = (lij("))si;j=1; " 2 (0; "1)g of lapla
ian matri
es of size s� s is a powerlyperturbed Markov 
hain, if there exist matri
es ��� = (Æij)i;j2S , and D = (dij)i;j2S , Æij � 0and dij 2 R [ f1g, for i; j 2 S, su
h that the asymptoti
 behavior of lapla
ians L(") isdetermined by ��� and D as follows: �lij(") � Æij"dij : (5)We assume that dij = 1 if and only if Æij = 0. In the following, we also use the 
on
ept ofpowerly perturbed nonnegative ve
tor whi
h is de�ned as the family fb("); " 2 (0; "1)g ofnonnegative ve
tors of size u, su
h that for some ve
tors ��� = (�i)ui=1 and z = (zi)ui=1, with�i � 0, zi 2 R [ f1g, for i = 1; : : : ; u, the following holds:bi(") � �i"zi : (6)Consider the following graph indu
ed by matrix D (we take into a

ount asymptoti
allynonzero entries): G�(D) = (S; f(i; j) 2 S � S : Æij 6= 0g):For an arbitrary forest f and a set F of forests in G�(D) we study parameters:(i) 8>>><>>>: d(f) := X(i;j)2f dijÆ(f) := Y(i;j)2f Æij9>>>=>>>; an asymptoti
 weight of the forest f .
(ii) 8>><>>: d(F) :=minf2F d(f)Æ(F) := Xf2F :d(f)=d(F) Æ(f)9>>=>>; an asymptoti
 weight of the set of forests F .Now, let w(f)(") and w(F)(") denote the weight of a forest f and a set F of forests in the graphG(L(")) indu
ed by L("), respe
tively. Observe that for suÆ
iently small ", G(L(")) = G�(D).The following fa
t is easy to prove:Fa
t 2. Consider a powerly perturbed Markov 
hain de�ned by L, with matri
es ��� and Dsu
h that (5) above holds; furthermore let f and F be a forest and a set of forests in G�(D).Then:(i) w(f)(") � Æ(f)"d(f);(ii) w(F)(") � Æ(F)"d(F).



We des
ribe the asymptoti
 behavior of solutions of system LT (RjR)x = b, related topowerly perturbed Markov 
hains, in terms of dire
ted forests expansions. It turns out that asolution of a system of linear equations, for a perturbed 
hain, 
an be treated as a perturbedve
tor. Proof omitted here 
an be found in [14℄.Theorem 3. Let matri
es ��� and D be su
h that (5) above holds, for a powerly perturbedMarkov 
hain fL("); " < "1g; let R � S, where S is a set of states. Moreover let ve
tors ���and z of size u := s � jRj be su
h that (6) holds, for a powerly perturbed ve
tor b. Supposethat there exist a forest with the root R in G�(D). Then the solution x(") = (xi("))i2SnR ofthe system LT (RjR)(")x(") = b(")satis�es for i 2 S nR the relation xi(") � �i"hi ;where the 
oeÆ
ients �i, hi are some 
onstants, i = 1; : : : ; u.In the spe
ial 
ase of stationary distribution, (i. e., equation (4)) we have:hi := d (F(fig))�minj2S d (F(fjg)) ;�i := Æ (F(fig))Æ Xj: hj=0 Æ (F(fjg)) : (7)Unfortunately, all obtained expressions for asymptoti
 
oeÆ
ients (ve
tors h and ��� fromTheorem 3) are 
omputationally non-tra
table, at least dire
tly, be
ause of their exponentialsize. We dis
uss the aggregation approa
h, yielding e�e
tive and a

urate pro
edures for
omputing the asymptoti
 
oeÆ
ients and approximate values of the stationary probabilityve
tor of NCD Markov 
hain.3 Combinatorial aggregationAsymptoti
 
oeÆ
ients and exa
t solutions. Before des
ribing the algorithm for 
om-puting asymptoti
 
oeÆ
ients h and ���, we explain how it 
an be used to obtain the approxi-mation of stationary distribution ve
tor.The algorithm takes as an input lapla
ian L = (lij) de�ning Markov 
hain and parameter" and 
onsists of three steps:1. 
onstru
t matri
es ��� and D su
h that:�lij = Æij"dij ;2. run Algorithm 1 to 
ompute ve
tors ��� and h;3. set �i(") := �i"hi ;When " < minij �(lij), we have dij = 0 (for all i; j), hen
e L =��� and Algorithm 1 givesthe exa
t solution (in parti
ular, hi = 0, for all i). In that 
ase, no aggregation 
an be doneand algorithm runs a dire
t (GTH) method. On the other hand, larger "'s allow to pro�t froma spe
i�
 blo
k stru
ture of a lapla
ian matrix, whi
h improves eÆ
ien
y. Hen
e, there existsa tradeo� between time/spa
e eÆ
ien
y of the algorithm and pre
ision of the approximation.



Fast 
omputation of forest expansions. The algorithm redu
es the size of state-spa
eof a Markov 
hain by lumping together 
losely related states. This pro
ess is repeated inthe 
onse
utive phases of aggregation; during ea
h phase graphs indu
ed by matri
es D and��� are 
onsidered. The algorithm groups states in ea
h 
losed 
lass of the graph and solvesthe system of linear equations restri
ted to this 
lass. Smaller size, hen
e tra
table, systemsof equations 
an be solved by a dire
t method. The solutions of these systems are used toupgrade the values of asymptoti
 
oeÆ
ients 
omputed for ea
h state of the original Markov
hain. Before passing to a next phase, an aggregation pro
edure is performed, lumping allstates in ea
h 
losed 
lass into a new, aggregated state.The task of 
omputing exponents hi is of quite di�erent nature than the task of 
omputingthe 
oeÆ
ients �i. While the former 
an be performed using purely 
ombinatorial methods(hen
e pre
isely), the latter uses a pro
edure of solving a system of linear equations, exposedto numeri
al errors. Although 
al
ulating 
oeÆ
ients �i is of 
ru
ial importan
e, in the sequelwe 
on
entrate on hi only (we explain later how to 
al
ulate �i).Algorithm 1 Cal
ulate asymptoti
 
oeÆ
ient � and h.1: 
onstru
t G0 = (S0; E0)2: k := 03: repeat4: k := k + 15: �nd partition of Gk�1 into 
losed 
lasses6: 
onstru
t Sk7: for ea
h 
losed 
lass in Sk, say Ik do8: 
onstru
t lapla
ian Lk9: 
ompute stationary distribution i. e., solve the system LTk x = b10: 
ompute m(Ik) (
f. (8))11: for ea
h aggregated state Ik�1 in Ik do12: 
ompute hk(Ik�1jIk) and �k(Ik�1jIk)13: for ea
h state i aggregated into state Ik�1 do14: upgrade �i = �(ijIk) and hi = h(ijIk) a

ording to (11)15: end for16: end for17: for all neighbors of 
lass Ik do18: determine shortest edges19: end for20: end for21: 
onstru
t new set of aggregated edges Ek22: Gk := (Sk; Ek)23: until Gk has only one 
losed 
lassConsider the graph G := G�(D) and its subgraph Gmin, 
onsisting of the shortest edgesoutgoing from ea
h vertex, i.e., for ea
h vertex i, of those dij whi
h are equal tom(i) := minj dij : (8)Shortest edges 
orrespond to the largest order of magnitude of probability of moving fromstate i to j. Re
all that D = (dij). In a single step of the aggregation pro
ess, the graph G isrepla
ed by another graph G0 = aggr(G). Verti
es of G0 are 
losed 
lasses I of Gmin together



with transient states in Gmin. Edges (I; J) in G0 are weighted by dIJ de�ned by the followingformula: dIJ := mini2I;j2J(dij + h(ijI)); whereh(ijI) := maxk2I m(k)�m(i): (9)Values h(ijI) are 
omputed in Algorithm 1 | they 
orrespond to 
oeÆ
ients hi in a graphrestri
ted to a 
losed 
lass I . Lemma 4 below justi�es su
h an aggregation s
heme in orderto 
al
ulate hi | re
all from (7) that to this aim we need d(F(i)). From Lemma 4 (and froman a

ompanying fa
t for �i) one derives 
orre
tness of (10) below. Let i denote any state ofG su
h that there exists some tree rooted in i (i. e. F(i) 6= ;). By a shortest tree rooted ini we mean any tree f rooted in i su
h that d(f) is minimal, i.e.,d(f) = minf 02F(i) d(f 0) = d(F(i)):Lemma 4 ([14℄). Let f be a shortest tree in G, rooted in i, and let I be a 
losed 
lass inGmin 
ontaining i, i 2 I. Let fI be a shortest tree in the subgraph of Gmin indu
ed by I,rooted in i. Moreover, let f 0 be a shortest tree in G0, rooted in I. The following holds (forsimpli
ity, we apply here notation d( ) to graph G0 as well):d(f) = d(fI) + d(f 0):Aiming at 
omputing the 
oeÆ
ients �i and hi e�e
tively, 
onsider the following aggre-gation pro
ess, whi
h gives rise to the sequen
e of graphs Gi = (Si; Ei), for i = 0; 1; : : : ;starting from i = 1, the supers
ript i enumerates 
onse
utive phases of algorithm.Initially, de�ne the graph G0 as Gmin, where G = G�(D). So, in the �rst step we startwith the subgraph of G�(D) 
onsisting of all shortest edges outgoing from every vertex. Fork = 1; 2; : : : , we de�ne indu
tively G0k = aggr(Gk�1). Re
all that the states of G0k are all
losed 
lasses and all transient states in Gk�1; the set of edges linking the aggregated states is
onstru
ted as in (9). Now, as a new graph Gk we take (G0k)min, whose states are the same asin G0k and whose edges are the shortest edges in G0k. Noti
e that the main loop ends pre
iselywhen the partitioning of Gk�1 results in the only one 
losed 
lass together with possibly sometransient states.From now on, we identify the aggregated state I 2 Sk with the set of states from S it
ontains. For a �xed state i, 
onsider the family of 
losed 
lasses (aggregated states):fig � I1 � I2 � : : : � In = S n T(T denotes the subset of transient states) 
ontaining i during the 
onse
utive phases of aggre-gation. We assume that the graph Gn, resulting from the n-th phase, is irredu
ible. Denote by�(ijIk) and h(ijIk) 
oeÆ
ients �i and hi 
omputed in the subgraph restri
ted to some 
losed
lass Ik. Following this 
onvention, �k(Ik�1jIk) and hk(Ik�1jIk) 
orrespond to the � and h
oeÆ
ient for the aggregated state Ik�1 
omputed during the k-th phase for the subgraph ofGk restri
ted to a 
losed 
lass Ik. The following re
ursive relation was proved in [14℄:�i(") � �1(ijI1)"h1(ijI1)�2(I1jI2)"h2(I1jI2) � : : : � �n(In�1jIn)"hn(In�1jIn)�(In) (10)where �(In) = 1 is the stationary probability of being inside the 
lass In. This relation holdsdue to the iterative upgrade s
heme for asymptoti
 
oeÆ
ients (step 14 in Algorithm 1), the




orre
tness of whi
h follows by Lemma 4:h(ijIk) = h(ijIk�1) + hk(Ik�1jIk)�(ijIk) = �(ijIk�1)�k(Ik�1jIk) (11)CoeÆ
ients hk(Ik�1jIk) 
an be 
omputed using the value of m(Ik) (step 12):hk(Ik�1jIk) = maxI�Ik m(I)�m(Ik�1):So, we have only to 
onsider all verti
es I aggregated during the previous step, whi
h belongto the 
losed 
lass Ik.Finally, we need to explain how to 
ompute e�e
tively �k(Ik�1jIk) in step 12. Re
allthat we have assumed that the Markov 
hain under 
onsideration possesses a spe
i�
 blo
kstru
ture, namely the sizes of all 
losed 
lasses Ik are small 
ompared with the size of thewhole state spa
e. It opens the possibility of using dire
t methods for solving systems ofthe form LTk x = b, independently inside ea
h 
lass Ik. For the solution the following holds:xk(") � �k"hk . Now having already 
omputed hk and putting some �xed ", the 
orresponding
oeÆ
ients �k are derived as the solution of the equation:�k(Ik�1jIk) = xIk�1"�hk(Ik�1jIk):4 Complexity analysisThe upper bound on time 
omplexity of Algorithm 1 is O(n3), where n is the number ofstates. The upper bound on memory needed is O(n2). However, the 
omplexity of algorithmdepends strongly on the stru
ture of a Markov 
hain under 
onsideration. In this se
tion westudy in detail some important 
ases. The main 
on
lusion is that if we 
an pro�t from aspe
i�
 stru
ture of a matrix (e.g. if we 
hoose an appropriate "), time O(n2) is suÆ
ient.Moreover, when a matrix is sparse, i.e. the number of edges m is signi�
antly smaller thatO(n2), the algorithm uses only O(n +m) spa
e. This is 
ru
ial sin
e matri
es appearing inappli
ations are often sparse and it is not rare that m = �(n). These estimates stronglymotivate further studies to establish an appropriate value of parameter ".Consider a lapla
ian with n states and m edges (i.e. m is the number of nonzero entriesin the probability transition matrix). Assume that in a step of the aggregation pro
ess, theunderlying graph is divided into k 
losed 
lasses of size n1; n2; : : : ; nk, respe
tively (i.e. n1 +n2 + : : :+ nk = jSj, transient state are singleton 
losed 
lasses).Theorem 5 ([8℄). The time and spa
e 
osts of a single phase of aggregation (in both algo-rithms) are as follows: T = O(n+m+ kXi=1 ni3);S = O(n+m+ max1�i�k ni2):



The 
ost of the algorithm for stationary distribution is equal to the total 
ost of all aggre-gation phases. It is diÆ
ult to foresee, in general, the number of phases and the number of
losed 
lasses in ea
h phase. This is why we study below some spe
ial 
ases | the aim is todemonstrate that the 
omplexity is strongly dependent on the degree of aggregation. In thefollowing let p denote the number of phases; when ne
essary, we use supers
ripts, like n(i),k(i), m(i), nj (i), to denote the number of states, et
., in phase i; n(1) = n;m(1) = m, et
.By Stotal and Ttotal we denote below the total time and spa
e 
ost of all aggregation phases,respe
tively.1. p = 1; k = 1; a pessimisti
 
ase | all states are aggregated during the �rst step; GTHpro
edure is performed on the whole matrix; Ttotal = O(n3); Stotal = O(n2).2. p = n� 1, k(i) = n� i; \lazy" aggregation | after step i there are still n� i� 1 isolatedstates; Ttotal = O(n2); Stotal = O(n+m).3. The \ripple" aggregation: here we assume that n = b�
; there are p = b aggregation phases.In the �rst phase 
 states are aggregated into a 
losed 
lass; while other states are isolated;in ea
h 
onse
utive phase a group of 
 states is added to the 
losed 
lass while remainingstates stay isolated. The time 
ost of the �rst phase is then T = O(n+m+(n�
+
3)): If wetake 
 = �(pn) then the 
ost of whole 
omputation is Ttotal = O(n2); Stotal = O(n+m).4. The \ideal" equilibrated aggregation, i.e. k(i) = pn(i). Assume that n(1) = 22l , for somel � 1. We have then p = l, k(i) = n(i+1) = pn(i), nj (i) = pn(i), j � pn(i). It is an easy
al
ulation to show that Ttotal = O(n2); Stotal = O(n+m).5. Consider an abstra
t algorithm 
onsisting of several phases, su
h that the 
ost of ea
hphase is polynomial w.r.t. the size of input data for this phase. Assumed that the size ofinput data de
reases at least twi
e in ea
h phase, the total 
ost of the algorithm is of thesame order of magnitude as the 
ost of its �rst phase.Now, look at the generalized ideal aggregation s
heme: k(i) = (n(i))1�"; nj(i) = (n(i))",j � k(i), n = n(1) = 2�l , where � = 11�" and 0 < " < 1. The size of the problem inthe i-th phase of aggregation is n(1�")i . The following inequality holds: n(1�")i < n2i ,hen
e the 
ost of the whole 
omputation is dominated by the 
ost of the �rst phase:Ttotal = O(m+ n(1+2")):5 Summary and open problemsWe presented a new approximation algorithm based on the 
ombinatorial approa
h proposedby Pokarowski [14℄ for 
omputing the stationary distribution of a Markov 
hain. The 
omplex-ity of our algorithm was analyzed in detail. Both analyti
 and experimental results obtainedby us 
lassify this new method as a potentially very useful tool in pra
ti
e. Some 
ase studiesof Markov models for 
ommuni
ation systems are reported in Appendix.The experiments show several advantages of our algorithm over existing methods:{ 
omparison with GTH pro
edure shows that pre
ision of approximation 
omputed by ouralgorithm is on the quite a

eptable level of log 1" for the prespe
i�ed parameter ";{ a very promising appli
ation of our algorithm is to use the approximate solution it yieldsas a starting point for some iterative methods e.g. blo
k su

essive over relaxation (
f. Ap-pendix).An important unsolved problem is to develop a method of 
hoosing an appropriate valueof de
omposability parameter ". In our approa
h some prepro
essing phase is assumed toperform this task.
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AppendixWe report here out
ome of our algorithm used to 
ompute stationary distribution of twoMarkov models: intera
tive 
omputer system (mentioned already in Introdu
tion) and two-dimensional tele
ommuni
ation model. To 
ompare our method with existing ones we performthe following experiment: stationary distribution ve
tor is approximated by our algorithmand the obtained solution is used then as a starting point for Blo
k Iterative Over Relaxation(BSOR) method. We measure the speedup (in the number of iteration) 
ompared with BSORstared from the uniform distribution until the prespe
i�ed pre
ision is rea
hed.5.1 Blo
k Su

essive Over Relaxation (BSOR)Blo
k su

essive over relaxation method belongs to the 
lass of stationary iterative methodswhi
h 
an be expressed in the simple form [6℄:x(k+1) = Ax(k) + 
; k = 0; 1; : : : ;where neither A nor 
 depend on the iteration step k. In parti
ular, BSOR pro
edure (seeAlgorithm 2) is parametrized by:{ starting solution ve
tor;{ relaxation parameter ! (0 < ! < 2);{ blo
k partitioning of the matrix;{ stop 
riterion.Algorithm 2 assumes the partitioning of lapla
ian matrix into N blo
ks; i-th diagonal blo
kdenoted by Lii is of size ni. In the sequel we 
onsider �ve blo
k partitioning strategies:Algorithm 2 BSOR method for solving the system LT (R��R)��� = 0repeatfor i = 1 to N do z(k+1)i := (1� !)LTiix(k)i � !(i�1Xj=1LTjix(k+1)j + NXj=i+1LTjix(k)j )Solve (e.g. using GTH method) system of equations:LTiix(k+1)i = z(k+1)iend fornormalize ve
tor x := (xT1 ; : : : ;xTN) where xTi = (xi1; xi2; : : : ; xini)T :�ij := xijPNi=1Pnij=1 xijuntil stop 
riterion su

eedsSCC We are looking for strongly 
onne
ted 
omponents in the underlying graph of the Markov
hain. Edges weighted with probability less than " (prespe
i�ed de
omposability parame-ter) are ignored. This partitioning 
oin
ides with one resulting from the near-de
omposabilitytest of the Markov Chain Analyzer (MARCA) [20℄.



CC Consider a graph obtained from underlying graph of the 
hain by repla
ing ea
h dire
tededge having probability greater than " by an undire
ted one. Blo
ks for partitioning arethen the 
onne
ted 
omponents of this graph.CC* As before partitioning is indu
ed by 
onne
ted 
omponents, but additionally all singletonsare grouped into a single 
omponent. This strategy was used in [6, 3℄Aggr We take a partitioning into 
losed 
lasses 
omputed during the �rst phase of 
ombinatorialaggregation. Re
all that in the aggregation pro
ess the subgraph of shortest edges leavingea
h state is 
onsidered.Asymp The 
omplete aggregation pro
ess whi
h approximates the stationary distribution indu
esa partition of states into blo
ks a

ording to the values of asymptoti
 
oeÆ
ients: ea
hblo
k groups states with the same value of hi. Su
h a partitioning is illustrated in Figure 3for two-dimensional Markov 
hain model.5.2 Intera
tive Computer SystemWe 
ome ba
k to the model des
ribed in Figure 1 (for a detailed treatment see [17℄). We re
allthat the model represents a time-shared multiprogrammed, paged, virtual memory 
omputersystem, modeled as a 
losed queueing network. In order to perform numeri
al experimentswe assign spe
i�
 values for the parameters of the model a

ording to [17℄. Re
all that thestate of the system is 
oded by a triple (x; y; z) of non-negative numbers, where x denotesthe number of users thinking or busy at theirs terminals, y and z denote, respe
tively, thenumber of pro
esses in the queue of SM and I/O. Obviously x + y + z � N . There are atmost six transition whi
h 
an be made from any state, to states obtained by in
reasing orde
reasing one of three 
oordinates. ICS example (N = 50)starting ��� partition # bl. # it. jj����jj1 jj���TLjj1SCC=Aggr 51 22 0:45e� 10 0:59e� 16uniform CC* 1221 161 0:92e� 10 0:16e� 14CC 1326 252 0:99e� 10 0:26e� 14SCC=Aggr 51 4 0:97e� 10 0:69e� 16aggregation CC* 1221 48 0:95e� 10 0:17e� 14CC 1326 48 0:95e� 10 0:17e� 14Table 1.For ICS model with 50 users we perform several experiments with iterative method. Inthis 
ase matrix de�ning Markov 
hain is of order 23; 426 with 156; 026 non-zero elements.The solution 
omputed by 
ombinatorial aggregation is used as a starting ve
tor for BSORalgorithm. The speed of 
onvergen
e, measured in the number of iterations, is 
ompared withBSOR starting from the uniform distribution. We investigate three blo
k partitionings:1. SCC for " = 0:0002 whi
h gives the same partition as Aggr into 51 strongly 
onne
ted
omponents.2. CC* for " = 0:1 yields 1221 blo
ks (
onne
ted 
omponents).3. CC for " = 0:003 results in 1326 blo
ks.



The stopping 
riterion we use in BSOR is jj���(k)����(k�1)jj1 � stop tolwhere stopping toleran
estop tol is set to 10�10. In the table jj����jj1 is the in�nity norm of the di�eren
e between thelast two iterates and jj���TLjj1 is the true residual upon termination.Noti
e (
f. Table 1) that starting from approximate solution 
omputed by 
ombinatorialaggregation allows us to redu
e the number of iterations about 4 � 5 times. In some 
asese.g. for SCC partition the time 
ost of Algorithm 1 is 
omparable with the 
ost of the�rst iteration of BSOR. One 
an additionally a

elerate 
ombinatorial aggregation by usingiterative method (e.g. SOR) instead of GTH for solving subproblems inside 
losed 
lasses.5.3 A Two-Dimensional Markov Chain Model
u v

Sx Sy

lost if u = N x
lost if v = N yFig. 2. Tele
ommuni
ation model for 2D exampleWe 
onsider here a two dimensional Markov 
hain, studied e.g. in [6, 20℄. It is a simpletele
ommuni
ation model illustrated in Figure 2. There are two servers; ea
h has a queue ofwaiting tasks of prespe
i�ed maximum size. A task arrives, wait for the �rst server, then waitsfor the se
ond and �nally leaves the network. The states are pairs (u; v) where u ranges from2D example (Nx = Ny = 64)starting ��� partition # bl. # it. jj����jj1 jj���TLjj1CC 65 505 0:96e� 10 0:25e� 11uniform Asymp 129 595 0:98e� 10 0:31e� 11CC 65 410 0:98e� 10 0:25e� 11aggregation Asymp 129 414 0:97e� 10 0:31e� 112D example (Nx = Ny = 128)starting ��� partition # bl. # it. jj����jj1 jj���TLjj1CC 129 1030 0:99e� 10 0:51e� 11uniform Asymp 257 1212 0:99e� 10 0:59e� 11CC 129 868 0:99e� 10 0:52e� 11aggregation Asymp 257 876 0:99e� 10 0:58e� 11Table 2.0 through Nx and v ranges from 0 through Ny. States 
orrespond to the size of two queues.In this model we assume transitions to the South, East and North-West. The state spa
e ofthe Markov 
hain is of size (Nx + 1)(Ny +1). In larger experiments the values of Nx and Nyare both set to 128, yielding a matrix of order 16; 641 with 66; 049 nonzero elements. For thismodel we perform several experiments:



Fig. 3. Aggregation in 2D example.1. the approximate solution is 
al
ulated using 
ombinatorial aggregation algorithm for " =0:06;2. the solution is 
omputed by BSOR pro
edure with CC partitioning (" = 0:06) andAsymp. We start from the uniform distribution.3. the solution is 
omputed using BSOR starting from approximation obtained by 
ombina-torial aggregation, the same partitionings are 
onsidered.Figure 3 illustrates the pro
ess of aggregation for Nx = Ny = 4. There are 8 phases ofaggregation ea
h shown in a separate �gure. We see a subgraph of shortest edgesGmin in everyphase; dashed line surrounds the only non-singleton 
losed 
lass appearing in that phase. Inthe last �gure the states are 
olored a

ording to the values of their asymptoti
 
oeÆ
ientsyielding Asymp partition for BSOR. These 
orrespond to 
onse
utive aggregation phases,i.e. those states whi
h are aggregated earlier have bigger stationary probability. Despite thatduring every step there is only one non-singleton 
losed 
lass, i.e. the aggregation does notpro
eed in parallel, the time needed for the whole 
omputation in only O(n2).The numeri
al results are summarized in Table 2. We observe about 25% speedup of BSORmethod started from approximate solution w.r.t. BSOR started from the uniform solution.CC partition behaves better than Asymp, but in the other hand the pro�t from 
hoosingstarting ve
tor is greater in Asymp.


