A combinatorial aggregation algorithm
for computing the stationary distribution
of a large Markov chain
(Extended abstract)

Anna Gambin'* and Piotr Pokarowski?

! Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland
email: aniag@mimuw.edu.pl
2 Institute of Applied Mathematics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland
email: pokar@mimuw.edu.pl

Abstract. A new aggregation algorithm for computing the stationary distribution of
a large Markov chain is proposed. This algorithm is attractive when the state space of
Markov chain is large enough so that the direct and iterative methods are inefficient. It
is based on grouping the states of a Markov chain in such a way that the probability of
changing the state inside the group is of greater order of magnitude than interactions
between groups. The correctness of the combinatorial aggregation is justified by the
method of forest expansions developed recently in [14, 15]. In contrast to existing meth-
ods our approach is based on combinatorial and graph-theoretic framework and can be
seen as an algorithmization of famous Matrix Tree Theorem. The general method is
illustrated by an example of computing the stationary distribution. We establish also
some preliminary results on the complexity of our algorithm. Numerical experiments
on several benchmark examples show the potential applicability of the algorithm in
real life problems.

1 Introduction

When considering complex systems, e.g. communication networks, the usual way to compute
their important parameters (like throughput) is to study a probabilistic markovian model
instead of the system itself. The usual task is to compute some of its characteristics (like
stationary distribution), corresponding to the parameters of a modeled system. To this aim
an appropriate system of linear equation must be solved.

Our attention is restricted to finite discrete-time Markov chains (although presented ap-
proach is valid also for continuous time). Such a Markov chain over a state space S is usually
represented by a transition probability matrix P of order n, where n is the number of
states in S. The (i, j)-th element of P, denoted p; ;, is the one-step transition probability of
going from state i to state j.

In what follows, boldface capital letters (e.g. P) denote matrices, boldface lowercase letters
(e.g.) denote column vectors, italic lowercase and uppercase letters (e.g. a) denote scalars
and italic letters (e.g. S) denote sets.

* This work was partially supported by the KBN grant 8 T11C 039 15

For a transition probability matrix P, any vector 7 satisfying

' =x"P, Y m=mlh =1, (1)
icS

is called a stationary probability distribution cf. [11,13]. Besides stationary distribution,
some other characteristics of a Markov chain are also of interest, such as first-passage time
between states or the number of visits in a fized state before absorption. To compute them,
one has also to solve a system of linear equations similar to (1).

The most elegant way to deal with (1) is to find the analytical formulas for the solution of
the system. Unfortunately, it is usually impossible and the only way is to solve the problem
numerically [18]. Problems arise from the computational point of view because of the large
number of states which systems may occupy. It is not uncommon for thousands of states to
be generated even for simple applications. On the other hand these Markov chains are often
sparse and possess specific structure.

Example To illustrate the applications of Markov chains let us consider a simple model
of an interactive computer system. Figure 1 represents the architecture of a time-shared,
paged, virtual memory computer. This model was widely studied in the literature [4, 18]; it
is considered again in more detail in Appendix. The system consists of: a set of terminals
from which users generate commands; a central processing unit (CPU); a secondary memory
device (SM); an I/O device (I/O). A queue of requests is associated with each device and

ON . “I—O
By

Fig. 1. Illustration for Interactive Computer System

the scheduling is assumed to be FCFS (First Come First Served). When the command is
generated, the user at the terminal remains inactive until the system responds. Symbolically,
a user having generated a command enters the CPU queue. The behavior of the process in the
system is characterized by a computing time followed by a page fault, after which the process
enters the SM queue, or an input/output (file request), in which case the process enters the
I/O queue. Processes which terminate their service at SM or I/O queue return to the CPU
queue. Completion of a command is represented by a departure of the process from the CPU
to the terminals.

States of the Markov chain corresponding to our model are determined by numbers of
processes in all queues: i. e. S = {(z,y,2) € N° : 2 +y+ 2z < n} for n users; three coordinates
correspond to the number of processes in three queues. The state space is large but sparse in
sense of connections; there are maximum 6 transitions going out from any state, corresponding
to entering or exiting a queue by a process.

Related research A lot of research has been done concerning the numerical solutions of some
linear equations that occur when one studies Markov chains (see for example [4, 18]). Almost
all methods for solving a system of linear equations are adapted into this context: iterative
and direct methods, projection techniques and the concept of preconditioning (see [19]). The
applicability of a method depends strongly on the structure of a Markov chain considered.

For solving the chain of medium size, direct methods could be applied. In Section 3
the GTH (Grassmann-Taksar-Heyman [9]) algorithm which is a modification of the standard
Gaussian elimination, is adopted for dealing with small subsystems arising from decomposition
of large Markov chain.

When the state space of the chain is large, even if it has sparse structure, for most of direct
solving methods, elimination of one nonzero element of the matrix, produce several nonzero
elements in positions which previously contained zero. This negative phenomenon is called
fill-in and the amount of it can be so extensive that available memory is quickly exhausted.

To avoid immense fill-in iterative methods can be used, as in that case, the only operation
in which the matrices are involved are multiplications by one or more vectors. These operations
do not alter the form of the matrix. For these reason, iterative methods (such as Gauss-Seidel
iteration or Successive Overrelaxation) have traditionally been preferred to direct methods.
On the other hand, a major disadvantage of iterative methods is a very long time often
required for convergence to the desired solution (see discussion in [18,19] and the references
therein). In the case of direct methods the upper bound on the time required to obtain the
solution may be determined a priori.

In this paper we focus on nearly uncoupled or nearly completely decomposable Markov
chains (see [2,5,18]). Such chains often arise in queueing network analysis, large scale eco-
nomic modeling and computer systems performance evaluation. The state space of these
chains can be naturally divided into groups of states such that transitions between states be-
longing to different groups are significantly less likely than transitions between states within
the same group.

For solving nearly uncoupled Markov chains, a family of methods has been proposed.
They are jointly classified as iterative aggregation/disaggregation [12] methods, and based on
a decompositional approach. The idea follows well known divide and conguer principle — if
the model is too large or complex to analyze, it is divided into separate subproblems. Ideally,
subproblems can be solved independently and the global solution is obtained by “merging”
the subproblem solutions together.

Our combinatorial aggregation approach can be seen as a generalization of existing aggre-
gation algorithms. The most important advantages over previous methods are:

— The presented algorithm uses combinatorial properties of directed forests in the underly-
ing graph of a Markov chain. Combinatorial and graph-theoretic approach simplifies the
description of algorithm and proof of correctness which relies on certain facts about forest
expansions of solutions of linear equation systems. These facts are formulated in Matrix
Tree Theorem and extensions of it proved in [1,14].

— The applicability of traditional aggregation methods is restricted to Markov chains with
a regular NCD structure'; in particular, the existence of asymptotically transient states
(i.e., those states with the outgoing probability of a bigger order of magnitude than the
ingoing probability) are problematic (such states are very common in large Markov chain
resulting from practical examples). Algorithms derived from our method work correctly
when such states are present.

! See conditions 6.1 — 6.4 in [18] pp. 335.

— All known aggregation methods considered in the literature are designed only to solve
the problem of stationary distribution, and other characteristics of Markov chain are
neglected. In contrast to this, our approach offers possibility of designing procedures for
other characteristics too.

Structure of the paper In Section 2 a mathematical theory behind the algorithms is
sketched (see [14,15] for more detailed treatement). The following section contains algorithm
themselves. The complexity analysis and several case studies can be find in Section 4. In
Appendix we report results of experiments we have performed they are very promising
and clearly justify the applicability of the algorithm in practical problems.

2 Directed forests method

Consider a directed graph G = (S, E); let the set of vertices (called also states) S =
{1,2,...s}, for some s > 1. The classification of states in a graph follows the Markov chain
terminology (see [11,13] for a detailed treatment of Markov chain theory). State j is reachable
from state i if there exists a path leading from ¢ to j (we use the short notation i — j). A
state i is called recurrent if, for any state j, i — j implies j — 4; otherwise, i is called
transient. The Markov chain and its graph are called irreducible. when i — j and j — i
for all states i, j.

A strong component of G is any maximal subgraph C of G, with the property that i — j
for any two states i,j of C. A strong component is absorbing if it has no outgoing edges.
Strong absorbing components are also called closed classes in the sequel. An underlying
graph of each Markov chain has at least one strong absorbing component.

An acyclic subgraph f = (S, Ey) of G containing all its vertices, in which any state has
out-degree at most 1 is called a directed spanning forest. A set of states R C S with
no outgoing edges in F; forms a root of a forest. When the root is singleton we talk about
directed spanning tree. We write shortly forest (tree) instead of directed spanning forest
(tree).

Let Fa(R) denote the set of all forests in G having the root R (a forest is identified with
the set of its edges). We will omit the subscript G when it is obvious from the context. For
readability, if R = {i1,i2,...4,,} we use the notation F(i,...i,,) instead of F(R). For fixed
i¢ Rand j € R, F;;(R) C F(R) denotes the set of all forests with the root R, containing a
path from i to j.

Now we enrich directed graphs with weights, corresponding to the probability of changing
the state in a Markov chain. A square matrix A of size s with elements from R induces a
graph G(A) with states {1,2,...,s} and edges between all pairs (i, j) with a;; # 0. In G(A)
we define the (multiplicative) weight of a forest f = (S, Ey) as

w(f)= [(-ai)

(i.j)€Ey

and the weight of a set F of forests is defined by

w(F) = Z w(f).

feF

For completeness, we put w((S,0)) := 1 (empty forest) and w(f) := 0 (empty set of forests).

It was observed that many facts are valid simultaneously for both discrete and continuous
time Markov chains. To deal with them at the same time we use, following [14], a laplacian
matrix, i.e. matrix L = (lz-j);j:], l;j € R satisfying l;; = — Zj:#i l;jfori=1,...,s. Denote
by I the identity matrix of size s. Let P be the transition probability matrix of a Markov
chain. It is easy to verify that matrix L = I — P is a laplacian matrix induced by P. From
now on, we assume that the Markov chain is introduced by the Markov chain laplacian
matrix ,i. e., laplacian matrix with non-positive real off-diagonal entries. Such matrices are
known in graph theory and combinatorics (see discussion in [14] and the references therein).

For U,WW C S and a square matrix A of size s, let us denote by A(U|W) the submatrix
of A resulting from deletion of rows and columns indexed by U and W respectively. For
the simplicity of notation we write A;; instead of A({i}|{j}). Let e, and 0, denote column
vectors with each component equal to 1 and 0, respectively.

Many characteristics of Markov chains are solutions of systems of linear equations of the
following form?:

L (R|R)x = b, (2)

where R is a subset of states and b is a nonnegative vector of size s—|R|; LT denotes transposed
matrix. As an example of (2), consider computing the stationary distribution. By (1), the

stationary distribution of a Markov chain defined by a laplacian matrix L = (lij);i:] is a
nonnegative, normalized vector ® = (m1,... ,m)7, being the solution of following system:
'L =0". (3)

Assuming for simplicity that the states numbering implies 75 > 0, one of possible ways of
solving (3) is to compute the solution x of a system of the form (2):

LssTXz_(lH:--- :llsfl)T (4)

and then to normalize the vector (xT, 1). On the other hand solving system (2) can be reduced
to computing the solution of (3) for appropriately defined laplacian L.

We express the solution of a system of linear equations as a rational function of directed
forest weights (called the forest expansion) cf. [14]. For stationary distribution this is for-
mulated in the following theorem (proved independently by many authors, among them [7,
16]):

Theorem 1 (Markov chain tree theorem). If the underlying graph of a Markov chain
has exactly one absorbing strong component, then the stationary distribution is given by:

____uF)
TS es w(F ()

Nearly completely decomposable (NCD) Markov chains (see [2,5,18]) are defined
by laplacian matrices that can be ordered so that the matrix has a block structure in which
the nonzero elements of the off-diagonal blocks are small compared with those of the diagonal
blocks. Such matrices often arise in queueing network analysis, large scale economic models
and computer systems performance evaluation.

, fori=1,...s;

2 Our method can be also adapted for a non-transposed case L(R‘R)x = b; this result is to be
reported elsewhere.

In the literature one can find some generalizations of NCD Markov chains, aiming in
expressing several different orders of magnitude of interaction strength (see for example [10]).
In [14] a wide class of Markov chains has been defined, subsuming previously known classes.
For given functions A, B: R — R, the notation A(e) ~ B(e) means that:

m A(E) =
e—0 B(E)

We also set A(e) ~ 0, if there exists &1 # 0 such that for any € € (—e1,e1), A(e) = 0.

A family {L(g) = (lij(€)); j=1, € € (0,&1)} of laplacian matrices of size s X s is a powerly
perturbed Markov chain, if there exist matrices A = (0;;)i jes, and D = (d;;)i jes, dij > 0
and d;; € RU {oo}, for i,j € S, such that the asymptotic behavior of laplacians L(e) is
determined by A and D as follows:

*lij(a) ~ (Sij&'dij. (5)
We assume that d;; = oo if and only if §;; = 0. In the following, we also use the concept of
powerly perturbed nonnegative vector which is defined as the family {b(e), € € (0,&1)} of
nonnegative vectors of size u, such that for some vectors ¢ = ({;)i; and z = (z;)%,, with
(i >0,z € RU{oc}, fori =1,...,u, the following holds:

bi(e) ~ Gie™. (6)

Consider the following graph induced by matrix D (we take into account asymptotically
nonzero entries):

G*(D) = (S,{(i.j) € Sx S+ 6;; #0}).

For an arbitrary forest f and a set F of forests in G*(D) we study parameters:

(i)

an asymptotic weight of the forest f.

(ii) S(F) = Z 5(f) an asymptotic weight of the set of forests F'.
d(f)=d(¥

fEF:)

Now, let w(f)(e) and w(F)(e) denote the weight of a forest f and a set F of forests in the graph
G(L(e)) induced by L(g), respectively. Observe that for sufficiently small e, G(L(g)) = G*(D).
The following fact is easy to prove:

Fact 2. Consider a powerly perturbed Markov chain defined by L, with matrices A and D
such that (5) above holds; furthermore let f and F be a forest and a set of forests in G*(D).
Then:

(i) w(f)(e) ~ 8(£e");

(ii) w(F)(e) ~ 6(F)e™F),

We describe the asymptotic behavior of solutions of system LT (R|R)x = b, related to
powerly perturbed Markov chains, in terms of directed forests expansions. It turns out that a
solution of a system of linear equations, for a perturbed chain, can be treated as a perturbed
vector. Proof omitted here can be found in [14].

Theorem 3. Let matrices A and D be such that (5) above holds, for a powerly perturbed
Markov chain {L(e),e < e1}; let R C S, where S is a set of states. Moreover let vectors ¢
and z of size u := s — |R| be such that (6) holds, for a powerly perturbed vector b. Suppose
that there exist a forest with the root R in G*(D). Then the solution x(c) = (xi(€))ics\r of
the system

LT(R|R)(e)x(e) = b(e)
satisfies for i € S\ R the relation
i(e) ~ mie™,
where the coefficients n;, h; are some constants, i =1,... | u.

In the special case of stationary distribution, (i. e., equation (4)) we have:
d(F({i}) —mind (F({7}))
7
M/ Y §(FHD) (@)

j:h;=0

Unfortunately, all obtained expressions for asymptotic coefficients (vectors h and n from
Theorem 3) are computationally non-tractable, at least directly, because of their exponential
size. We discuss the aggregation approach, yielding effective and accurate procedures for
computing the asymptotic coefficients and approximate values of the stationary probability
vector of NCD Markov chain.

3 Combinatorial aggregation

Asymptotic coefficients and exact solutions. Before describing the algorithm for com-
puting asymptotic coefficients h and 1, we explain how it can be used to obtain the approxi-
mation of stationary distribution vector.

The algorithm takes as an input laplacian L = (I;;) defining Markov chain and parameter
€ and consists of three steps:

1. construct matrices A and D such that:
7lij = (sijEdij,

2. run Algorithm 1 to compute vectors) and h;
3. set 7Ti(5) = nighi;

When € < min;; —(l;;), we have d;; = 0 (for all 4, j), hence L = A and Algorithm 1 gives
the exact solution (in particular, h; = 0, for all 7). In that case, no aggregation can be done
and algorithm runs a direct (GTH) method. On the other hand, larger ¢’s allow to profit from
a specific block structure of a laplacian matrix, which improves efficiency. Hence, there exists
a tradeoff between time/space efficiency of the algorithm and precision of the approximation.

Fast computation of forest expansions. The algorithm reduces the size of state-space
of a Markov chain by lumping together closely related states. This process is repeated in
the consecutive phases of aggregation; during each phase graphs induced by matrices D and
A are considered. The algorithm groups states in each closed class of the graph and solves
the system of linear equations restricted to this class. Smaller size, hence tractable, systems
of equations can be solved by a direct method. The solutions of these systems are used to
upgrade the values of asymptotic coefficients computed for each state of the original Markov
chain. Before passing to a next phase, an aggregation procedure is performed, lumping all
states in each closed class into a new, aggregated state.

The task of computing exponents h; is of quite different nature than the task of computing
the coefficients 7;. While the former can be performed using purely combinatorial methods
(hence precisely), the latter uses a procedure of solving a system of linear equations, exposed
to numerical errors. Although calculating coefficients 7); is of crucial importance, in the sequel
we concentrate on h; only (we explain later how to calculate n;).

Algorithm 1 Calculate asymptotic coefficient 1 and h.

1: construct G° = (S°, E?)
2: k=0

3: repeat

4 k:=k+1

5: find partition of G*~' into closed classes
6: construct S*
7
8

for each closed class in S*, say I" do
construct laplacian Ly

9: compute stationary distribution i. e., solve the system L{x = b
10: compute m(I*) (cf. (8))

11: for each aggregated state I*~' in I* do

12: compute h*(I¥=11%) and n* (I*~"|1*)

13: for each state i aggregated into state I*7' do

14: upgrade 7; = 5(i|I*) and h; = h(i|I*) according to (11)
15: end for

16: end for

17: for all neighbors of class T* do

18: determine shortest edges

19: end for

20: end for

21: construct new set of aggregated edges E¥

22: G* .= (S* EY)
23: until G* has only one closed class

Consider the graph G := G*(D) and its subgraph G, consisting of the shortest edges
outgoing from each vertex, i.e., for each vertex i, of those d;; which are equal to

m(i) 1= mind;;. (8)
J
Shortest edges correspond to the largest order of magnitude of probability of moving from

state i to j. Recall that D = (d;;). In a single step of the aggregation process, the graph G is
replaced by another graph G’ = aggr(G). Vertices of G' are closed classes I of G i together

with transient states in G- Edges (I, J) in G’ are weighted by dy; defined by the following
formula:

2

dry:= min (d;; + h(i|l here
1= win (di; +h(ilD)), where o
h(i|I) == maxm(k) — m(i).
kel

Values h(i|I) are computed in Algorithm 1 — they correspond to coefficients h; in a graph
restricted to a closed class I. Lemma 4 below justifies such an aggregation scheme in order
to calculate h; recall from (7) that to this aim we need d(F(i)). From Lemma 4 (and from
an accompanying fact for n;) one derives correctness of (10) below. Let i denote any state of
G such that there exists some tree rooted in i (i. e. F(i) # 0). By a shortest tree rooted in

i we mean any tree f rooted in i such that d(f) is minimal, i.e.,

d(f) = min d(f") = d(F(®)).
(f) Jmin (f) = d(F(2))
Lemma 4 ([14]). Let f be a shortest tree in G, rooted in i, and let I be a closed class in
Gmin containing i, © € 1. Let fr be a shortest tree in the subgraph of Gpin induced by I,
rooted in i. Moreover, let f' be a shortest tree in G', rooted in I. The following holds (for
simplicity, we apply here notation d(_) to graph G' as well):

d(f) = d(fr) +d(f').

Aiming at computing the coefficients 7; and h; effectively, consider the following aggre-
gation process, which gives rise to the sequence of graphs G = (S%, E?), for i = 0,1,...;
starting from i = 1, the superscript ¢ enumerates consecutive phases of algorithm.

Initially, define the graph G° as Ginin, where G = G*(D). So, in the first step we start
with the subgraph of G*(D) cousisting of all shortest edges outgoing from every vertex. For
k =1,2,..., we define inductively G}, = aggr(Gr—1). Recall that the states of G}, are all
closed classes and all transient states in G¥~!; the set of edges linking the aggregated states is
constructed as in (9). Now, as a new graph G, we take (G,) min, Whose states are the same as
in G}, and whose edges are the shortest edges in G},. Notice that the main loop ends precisely
when the partitioning of Gx_1 results in the only one closed class together with possibly some
transient states.

From now on, we identify the aggregated state I € S* with the set of states from S it
contains. For a fixed state i, consider the family of closed classes (aggregated states):

{iycr'crrc...cr=8\r1

(T denotes the subset of transient states) containing 4 during the consecutive phases of aggre-
gation. We assume that the graph G", resulting from the n-th phase, is irreducible. Denote by
n(i|I*) and h(i|I*) coefficients n; and h; computed in the subgraph restricted to some closed
class T*. Following this convention, n*(I*~1|I*) and h¥(I*=1|T*) correspond to the and h
coefficient for the aggregated state I*~1 computed during the k-th phase for the subgraph of
G* restricted to a closed class I*. The following recursive relation was proved in [14]:

7_(2‘(6) -~ nl(i|]1)6h (|1)nQ(Il\Iz)gh (') . . nn(lnfl‘ln)gh"(l"’ \I")ﬂ_(ln) (10)

where 7(I™) = 1 is the stationary probability of being inside the class I"™. This relation holds
due to the iterative upgrade scheme for asymptotic coefficients (step 14 in Algorithm 1), the

correctness of which follows by Lemma 4:

G151 + hR (IR TR
i k

Gt ()

h(ilI*) = h
n(i| 1) =
Coefficients h¥ (I*=1|T%) can be computed using the value of m(I*) (step 12):

hk Ik*]]'k — I) — kal .
(1" |I%) ?g,gm() —m(I"7)

So, we have only to consider all vertices I aggregated during the previous step, which belong
to the closed class I*.

Finally, we need to explain how to compute effectively n*(I*~1|I*) in step 12. Recall
that we have assumed that the Markov chain under consideration possesses a specific block
structure, namely the sizes of all closed classes I* are small compared with the size of the
whole state space. It opens the possibility of using direct methods for solving systems of
the form LZX = b, independently inside each class I*. For the solution the following holds:
xg(e) ~ n’“shk. Now having already computed h* and putting some fixed &, the corresponding
coefficients n* are derived as the solution of the equation:

nk([kfl |[k) — mlk—laihk(lkil‘lk).

4 Complexity analysis

The upper bound on time complexity of Algorithm 1 is O(n?), where n is the number of
states. The upper bound on memory needed is O(n?). However, the complexity of algorithm
depends strongly on the structure of a Markov chain under consideration. In this section we
study in detail some important cases. The main conclusion is that if we can profit from a
specific structure of a matrix (e.g. if we choose an appropriate €), time O(n?) is sufficient.
Moreover, when a matrix is sparse, i.e. the number of edges m is significantly smaller that
O(n?), the algorithm uses only O(n + m) space. This is crucial since matrices appearing in
applications are often sparse and it is not rare that m = ©@(n). These estimates strongly
motivate further studies to establish an appropriate value of parameter e.

Consider a laplacian with n states and m edges (i.e. m is the number of nonzero entries
in the probability transition matrix). Assume that in a step of the aggregation process, the
underlying graph is divided into k closed classes of size ny,ns, ... ,ny, respectively (i.e. ny +
no + ...+ ng = |S|, transient state are singleton closed classes).

Theorem 5 ([8]). The time and space costs of a single phase of aggregation (in both algo-
rithms) are as follows:

k
T=0m+m+ Znﬁ)
i=1

S = O(n+m+ max n;”).
1<i<k

The cost of the algorithm for stationary distribution is equal to the total cost of all aggre-
gation phases. It is difficult to foresee, in general, the number of phases and the number of
closed classes in each phase. This is why we study below some special cases — the aim is to
demonstrate that the complexity is strongly dependent on the degree of aggregation. In the
following let p denote the number of phases; when necessary, we use superscripts, like n(?,
D m® n;(0 to denote the number of states, etc., in phase i; n) = n,m1) = m, etc.
By Siotar and Tiotq; we denote below the total time and space cost of all aggregation phases,
respectively.

1. p =1,k = 1; a pessimistic case — all states are aggregated during the first step; GTH
procedure is performed on the whole matrix; Tyorar = O(n?), Siorar = O(n?).

2. p=n—1, k) =n —i; “lazy” aggregation — after step i there are still n — i — 1 isolated
states; Tiotal = O(nQ); Stotal = O(’ﬂ + m)

3. The “ripple” aggregation: here we assume that n = b-c; there are p = b aggregation phases.
In the first phase ¢ states are aggregated into a closed class; while other states are isolated;
in each consecutive phase a group of ¢ states is added to the closed class while remaining
states stay isolated. The time cost of the first phase is then T = O(n+m+(n—c+c?)). If we
take ¢ = @(y/n) then the cost of whole computation is Tiorar = O(n2), Stotar = O(n +m).

4. The “ideal” equilibrated aggregation, i.e. k() = Vn(. Assume that n(1) = 2217 for some
l > 1. We have then p = I, k() = plitD) = \/W, nj(i) = \/W, j< Vo, 1t is an easy
calculation to show that Tyota = O(n?), Siotar = O(n + m).

5. Consider an abstract algorithm consisting of several phases, such that the cost of each
phase is polynomial w.r.t. the size of input data for this phase. Assumed that the size of
input data decreases at least twice in each phase, the total cost of the algorithm is of the
same order of magnitude as the cost of its first phase.

Now, look at the generalized ideal aggregation scheme: k() = (n(9)1== n,;0) = (n(9)e,

i< k@ p=npt =2 where a = and 0 < € < 1. The size of the problem in

1
1—¢

the i-th phase of aggregation is n{!==)". The following inequality holds: n!=%)" < 7
hence the cost of the whole computation is dominated by the cost of the first phase:
Ttoml = O(m + n(1+25)).

5 Summary and open problems

We presented a new approximation algorithm based on the combinatorial approach proposed
by Pokarowski [14] for computing the stationary distribution of a Markov chain. The complex-
ity of our algorithm was analyzed in detail. Both analytic and experimental results obtained
by us classify this new method as a potentially very useful tool in practice. Some case studies
of Markov models for communication systems are reported in Appendix.

The experiments show several advantages of our algorithm over existing methods:

— comparison with GTH procedure shows that precision of approximation computed by our
algorithm is on the quite acceptable level of log% for the prespecified parameter ¢;

— a very promising application of our algorithm is to use the approximate solution it yields
as a starting point for some iterative methods e.g. block successive over relaxation (cf. Ap-
pendix).

An important unsolved problem is to develop a method of choosing an appropriate value
of decomposability parameter €. In our approach some preprocessing phase is assumed to
perform this task.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Chaiken, S.: A combinatorial proof of all minors matrix tree theorem, SIAM J. Alg. Disc. Math.,

vol. 3, 1982, pp. 319-329.

Courtois, P. J.: Decomposability: Queueing and Computer System Applications, Academic Press,
New York, 1977.

Dayar, T.: Permuting Markov chains to nearly completely decomposable form, Technical Re-
port BU-CEIS-9808, Department of Computer Engineering and Information Science, Bilkent
University, Ankara, Turkey, August 1998.

Dayar, T. and Stewart, W.J.: On the effects of using the Grassman-Taksar-Heyman method
in iterative aggregation-disaggregation, SIAM Journal on Scientific Computing, vol. 17, 1996,
pp- 287-303.

Dayar, T. and Stewart, W.J.: Quasi-lumpability, lower-bounding coupling matrices and nearly
completely decomposable Markov chains, SIAM Journal on Matriz Analysis and Applications,
vol. 18, 1997, pp. 482-498.

Dayar, T. and Stewart, W.J.: Comparison of partitioning techniques for two-level iterative
solvers on large, sparse Markov chains, to appear in STAM Journal on Scientific Computing.
Freidlin, M. I. and Wentzell, A. D.: On small random perturbations of dynamical systems,
Russian Math. Surveys, 1970, vol. 25(1), pp. 1-55.

Gambin, A.: Combinatorial Methods in Approximation Algorithms for Markov Chains with
Large State Space. PhD thesis, Institute of Informatics, Warsaw University 1999.

W.K. Grassmann, M.I. Taksar and D.P. Heyman. Regenerative analysis and steady-state dis-
tributions for Markov chains, Operations Research, vol.33, pp 1107-1116, 1985.

Hassin, R. and Haviv, M.: Mean passage times and nearly uncoupled Markov chains, STAM
Journal of Disc. Math.,1992, vol. 5, pp. 386-397.

Tosifescu, M.: Finite Markov Processes and Their Applications, Wiley and Sons, 1980.

Kafeety, D.D., Meyer, C.D. and Stewart, W.J.: A General Framework for Iterative Aggre-
gation/Disaggregation Methods, Proceedings of the Fourth Copper Mountain Conference on
Iterative Methods, 1992.

Kemeny, J.G. and Snell, J.L.: Finite Markov Chains. Van Nostrand, Princeton, 1960.
Pokarowski, P. Directed forests and algorithms related to Markov chains, PhD thesis Institute
of Mathematics, Polish Academy of Sciences, 1998.

Pokarowski, P. Directed forests with applications to algorithms related to Markov chains; Ap-
plicationes Mathematicae, vol. 26, no. 4, 1999, pp. 395-414.

Shubert, B.O.: A flow-graph formula for the stationary distribution of a Markov chain, IEEE
Trans. Systems Man. Cybernet., 1975,vol. 5, pp. 565-566.

Stewart, W. J.: A Comparison of Numerical Techniques on Markov Modeling, Comm. ACM |,
vol. 21, 1978, pp. 144-152.

Stewart, W. J.: Introduction to the numerical solution of Markov chains, Princeton University
Press, 1994.

Stewart, W. J.: Numerical methods for computing stationary distribution of finite irreducible
Markov chains, Chapter 8 of Advances in Computational Probability. Edited by Winfried Grass-
mann; To be published by Kluwer Academic Publishers, 1997.

Stewart, W. J.: MARCA: Markov Chain Analyzer. A software package for Markov modelling.
In W.J. Steward (Ed.), Numerical solution of Markov chains, M. Dekker, Inc., New York, 1991,
pp. 37-62.

Appendix

We report here outcome of our algorithm used to compute stationary distribution of two
Markov models: interactive computer system (mentioned already in Introduction) and two-
dimensional telecommunication model. To compare our method with existing ones we perform
the following experiment: stationary distribution vector is approximated by our algorithm
and the obtained solution is used then as a starting point for Block Iterative Over Relaxation
(BSOR) method. We measure the speedup (in the number of iteration) compared with BSOR
stared from the uniform distribution until the prespecified precision is reached.

5.1 Block Successive Over Relaxation (BSOR)

Block successive over relaxation method belongs to the class of stationary iterative methods
which can be expressed in the simple form [6]:

2D A 2 (R) +c, k=0,1,...,

where neither A nor ¢ depend on the iteration step k. In particular, BSOR procedure (see
Algorithm 2) is parametrized by:

— starting solution vector;

— relaxation parameter w (0 < w < 2);
— block partitioning of the matrix;

— stop criterion.

Algorithm 2 assumes the partitioning of laplacian matrix into N blocks; i-th diagonal block
denoted by Lj; is of size n;. In the sequel we consider five block partitioning strategies:

Algorithm 2 BSOR method for solving the system LT(R‘R)W =0

repeat
for i =1to N do

i1 N
zEkH) = (1— w)LZXEk) — w(z Lﬁxﬁkﬂ) + Z Lﬁxgk))
=1 j=it1

Solve (e.g. using GTH method) system of equations:

Lg“ (k1) _ (k1)

ixi i
end for
normalize vector x := (x1T7 o ,x%) where xF = (Ti1, Tizy - . . ,mmi)T:
S ij
ij = N By
ic Zjl:1 Tij

until stop criterion succeeds

SCC We are looking for strongly connected components in the underlying graph of the Markov
chain. Edges weighted with probability less than e (prespecified decomposability parame-
ter) are ignored. This partitioning coincides with one resulting from the near-decomposability
test of the Markov Chain Analyzer (MARCA) [20].

CC Consider a graph obtained from underlying graph of the chain by replacing each directed
edge having probability greater than € by an undirected one. Blocks for partitioning are
then the connected components of this graph.

CC* As before partitioning is induced by connected components, but additionally all singletons
are grouped into a single component. This strategy was used in [6, 3]

Aggr We take a partitioning into closed classes computed during the first phase of combinatorial
aggregation. Recall that in the aggregation process the subgraph of shortest edges leaving
each state is considered.

Asymp The complete aggregation process which approximates the stationary distribution induces
a partition of states into blocks according to the values of asymptotic coefficients: each
block groups states with the same value of h;. Such a partitioning is illustrated in Figure 3
for two-dimensional Markov chain model.

5.2 Interactive Computer System

We come back to the model described in Figure 1 (for a detailed treatment see [17]). We recall
that the model represents a time-shared multiprogrammed, paged, virtual memory computer
system, modeled as a closed queueing network. In order to perform numerical experiments
we assign specific values for the parameters of the model according to [17]. Recall that the
state of the system is coded by a triple (z,y,2) of non-negative numbers, where = denotes
the number of users thinking or busy at theirs terminals, y and z denote, respectively, the
number of processes in the queue of SM and I/O. Obviously z + y + z < N. There are at
most six transition which can be made from any state, to states obtained by increasing or
decreasing one of three coordinates.

ICS example (N = 50)
FOLF] [Anlle [Bl

starting m partition

uniform SCC=Aggr| 51 | 22 |0.45e — 10|0.59¢ — 16
CC* 1221 161 [{0.92e — 10{0.16e — 14

CC 1326 | 252 |0.99¢ — 10|0.26e — 14

aggregation SCC=Aggr| 51 4 10.97e — 10|0.69¢ — 16
CC* 1221 48 |0.95e — 10|0.17¢ — 14

CC 1326 | 48 |0.95e — 10|0.17¢ — 14

Table 1.

For ICS model with 50 users we perform several experiments with iterative method. In
this case matrix defining Markov chain is of order 23,426 with 156,026 non-zero elements.
The solution computed by combinatorial aggregation is used as a starting vector for BSOR
algorithm. The speed of convergence, measured in the number of iterations, is compared with
BSOR starting from the uniform distribution. We investigate three block partitionings:

1. SCC for € = 0.0002 which gives the same partition as Aggr into 51 strongly connected
components.

2. CC* for e = 0.1 yields 1221 blocks (connected components).

3. CC for £ = 0.003 results in 1326 blocks.

The stopping criterion we use in BSOR is ||x(*) —z(*=1)|| < stop_tol where stopping tolerance
stop_tol is set to 10710, In the table || Am||~ is the infinity norm of the difference between the
last two iterates and ||w” L|| is the true residual upon termination.
Notice (cf. Table 1) that starting from approximate solution computed by combinatorial
aggregation allows us to reduce the number of iterations about 4 — 5 times. In some cases
e.g. for SCC partition the time cost of Algorithm 1 is comparable with the cost of the
first iteration of BSOR. One can additionally accelerate combinatorial aggregation by using
iterative method (e.g. SOR) instead of GTH for solving subproblems inside closed classes.

5.3 A Two-Dimensional Markov Chain Model

lostifu=Nx

@

lost if v =

Ny

Fig. 2. Telecommunication model for 2D example

(e
sy

We consider here a two dimensional Markov chain, studied e.g. in [6,20]. It is a simple
telecommunication model illustrated in Figure 2. There are two servers; each has a queue of
waiting tasks of prespecified maximum size. A task arrives, wait for the first server, then waits
for the second and finally leaves the network. The states are pairs (u, v) where u ranges from

. " 2D example (N, = N, = 64)
starting w |partition - -
& #bL[# it | [An[w | (17 Ll
miform |__CC_| 65 | 505 [0.96¢ —10[0.25¢ — 11
Asymp| 129 | 595 [0.98¢ — 10]0.31e — 11
- erontion]l_CC_| 66 [410 J0.98¢ —10[0.25¢ — 11
BB A O mp | 120 | 414 [0.97¢ — 10[0.31e — 11
. " 2D example (N, = N, = 128)
starting artition .
&T P #bL[# it [Anflw |7 Llw
miform |_CC__] 129 [1030[0.99¢ — 10[0.51e — 11
Asymp | 257 |1212]0.99¢ — 10{0.59¢ — 11
eronation_CC | 129 | 868 [0.99¢ — 10[0.52¢ — 11
88ree Asymp | 257 | 876 |0.99¢ — 10]0.58¢ — 11
Table 2.

0 through N, and v ranges from 0 through IV,. States correspond to the size of two queues.
In this model we assume transitions to the South, East and North-West. The state space of
the Markov chain is of size (N, + 1)(N, + 1). In larger experiments the values of N, and N,
are both set to 128, yielding a matrix of order 16,641 with 66,049 nonzero elements. For this
model we perform several experiments:

-

-

o
)
)
b,

-
3
3

PR A

©O 0 @ o o
@ 6 6 o o
e 6 06 0 O

O O O O o

Fig. 3. Aggregation in 2D example.

1. the approximate solution is calculated using combinatorial aggregation algorithm for € =
0.06;

2. the solution is computed by BSOR procedure with CC partitioning (¢ = 0.06) and
Asymp. We start from the uniform distribution.

3. the solution is computed using BSOR starting from approximation obtained by combina-
torial aggregation, the same partitionings are considered.

Figure 3 illustrates the process of aggregation for N, = N, = 4. There are 8 phases of
aggregation each shown in a separate figure. We see a subgraph of shortest edges Gmin in every
phase; dashed line surrounds the only non-singleton closed class appearing in that phase. In
the last figure the states are colored according to the values of their asymptotic coefficients
yielding Asymp partition for BSOR. These correspond to consecutive aggregation phases,
i.e. those states which are aggregated earlier have bigger stationary probability. Despite that
during every step there is only one non-singleton closed class, i.e. the aggregation does not
proceed in parallel, the time needed for the whole computation in only O(n?).

The numerical results are summarized in Table 2. We observe about 25% speedup of BSOR
method started from approximate solution w.r.t. BSOR started from the uniform solution.
CC partition behaves better than Asymp, but in the other hand the profit from choosing
starting vector is greater in Asymp.

