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Figure 1. Four non-intersecting lattice paths with steps (0,1) and (1,0)

Introduction

A lattice path is a polygonal line in the discrete Cartesian plane Z2 However, in
this thesis we will only be concerned with lattice paths with steps (1,1) and (1,—1)
or with steps (1,0) and (0,1). A family of lattice paths is called non-intersecting,
if no two paths have a lattice point in common. In Figure 1 an example for such a
family is shown.

Families of non-intersecting lattice paths are objects of great importance in
combinatorics: They can be used to count plane partitions and different sorts of
tableaux, and thus may be used to proof certain determinantal formulas for Schur
functions and symplectic and orthogonal characters, see [4, 5, 6]. In statistical me-
chanics non-intersecting lattice paths are known as ‘vicious walkers’, and are used
to describe wetting and melting processes, see [3]. In commutative algebra families
of non-intersecting lattice paths can be used to describe the Hilbert series of deter-
minantal and Pfaffian rings, see [8]. In this thesis we present new results in these
three areas.

The first chapter is titled “A ‘nice’ bijection for a content formula for skew
semistandard Young tableaux”. In this chapter we give a bijective proof of a formula
relating the generating functions for Young tableaux and the generating function for
reverse semistandard Young tableaux to each other.

As already mentioned before, there is a close connection between semistandard
Young tableaux and families of non-intersecting lattice paths. In the following we
will explain these matters briefly. Let A = (A, Ao, ..., A) and g = (u, pa, - - -, fis)
be two weakly decreasing sequences of non-negative integers such that s < r and
Ai < p; fori € {1,2,...,s}. For convenience we set u; = 0 for i > s. The shape
A is an array of r rows of boxes, such that the i*® row contains \; — u; boxes
and the first box of the i row is placed in column yu; + 1, for i € {1,2,...,r}.
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a. a semistandard Young tableau of b. the corresponding family of non-
shape (4,4,4,3)/(2,2,1) intersecting lattice paths

Figure 2.

A semistandard Young tableau of shape A\/u is a filling of these boxes with non-
negative integers such that the entries are weakly increasing along rows and strictly
increasing along columns. An example for a semistandard Young tableau can be
found in Figure 2.a. Similarly, a reverse semistandard Young tableau of shape A\/pu
is a filling of the boxes with non-negative integers such that the entries are weakly
decreasing along rows and strictly decreasing along columns.

Let P be a semistandard Young tableaux of shape A/p, where A = (A, A2, ..., ;)
and p = (p1, f2, ..., fts). For any shape A let A" denote the transposed shape, i.e.,
A is the length of the i*® column of \. Define a; = 2i —2p! and e¢; = 20 — 2\, +m + 1
fori e {1,2,..., A}, where m is the maximum of all entries in P. Now we translate
P into a family of \; lattice paths starting at (0, a;) and terminating at (m + 1, ¢;),
i € {1,2,...,\}, as follows: The j® path does a (1, —1)-step for the i time
after P“Q‘”vj steps, all the other steps are (1,1). Because each row of P is weakly
increasing, this family of paths is non-intersecting. An example of this bijection is
shown in Figure 2.

Similarly, reverse semistandard Young tableaux can also be interpreted as fami-
lies of non-intersecting lattice paths. Thus, the formula we prove in Chapter 1 can
be translated into a formula relating the generating functions of certain families of
non-intersecting lattice paths.

In fact, the bijection relating semistandard Young tableaux and families of non-
intersecting lattice paths described above was used in [12] to find an asymptotic
approximation of the number of certain families of non-intersecting lattice paths.
In the second chapter, “Asymptotic analysis of vicious walkers with arbitrary end-



points”, we generalize these results. However, we have to use a different method.

‘Vicious walkers’ are families of p non-intersecting lattice paths with steps (1, 1)
and (1, —1) that have given starting points (0, 2q;), i € {1,2,...,p} and end some-
where on the line x = m. In this setting, m is called the length of the walkers.

Thus the question arises how to count families of non-intersecting lattice paths.
This task is accomplished by the famous Lindstrom-Gessel-Viennot Theorem, see
Theorem 2.1 on page 22 or [6, Corollary 2]. This theorem reduces the enumeration
of families of non-intersecting lattice paths to the evaluation of a determinant, whose
entry in row i and column j is the number of lattice paths from the i*" starting to
the 7' end point.

Originally, this result was discovered by Lindstréom in 1973, in the context of
matroid theory, see [13]. It is a curious coincidence that his result was independently
rediscovered in the 1980s in three different communities at about the same time: in
statistical physics by Fisher [3, Section 5.3], in order to apply it to the analysis of
vicious walkers as a model of wetting and melting, in combinatorial chemistry by
John and Sachs [9] and Gronau, Just, Schade, Scheffler and Wojciechowski [7] in
order to compute Pauling’s bond order in benzenoid hydrocarbon molecules, and in
enumerative combinatorics by Gessel and Viennot [5, 6] in order to count tableaux
and plane partitions. Finally, it should be mentioned that the same idea appeared
even earlier in work by Karlin and McGregor [10, 11] in a probabilistic framework.

Using the Lindstrom-Gessel-Viennot Theorem, some knowledge of ordinary and
odd orthogonal characters, the Poisson summation Theorem and some limit cases
of Selberg’s integral formula, we find an asymptotic approximation of the number
of vicious walkers as described above, as their length m tends to infinity. Also, we
obtain such an asymptotic approximation if the walkers are not allowed to go below
the r-axis.

The last two chapters of this thesis are concerned with the Hilbert series of
ladder determinantal rings. These rings are very important objects in commutative
algebra and Schubert calculus, see [2, 8, 1]. Thus, it is a natural question to ask
for a ‘nice’ formula for their Hilbert series. It is known that the Hilbert series of a
ladder determinantal ring equals Y., hez!/(1—2)¢, where, d is the Krull dimension
of the ring and h, denotes the number of families of non-intersecting lattice paths
with steps (1,0) and (0, 1), and ¢ north-east turns. Here, a north-east turn is a point
of the lattice path which is the end point of a (0, 1)-step and the starting point of a
(1,0)-step.

It is the aim of Chapter 3 to present a formula for the generating function men-
tioned above. Naturally, we would like to have a determinantal expression similar to
that in the Lindstrom-Gessel-Viennot Theorem. In order to obtain such a formula,
it helps to know how the latter theorem is proved. The key ingredient is the follow-
ing involution on the set of families of paths which contain two paths that intersect:
Let (P, P, ..., P,) be such a family of paths and suppose that P; and P; are two
paths that intersect in a lattice point . Let P; be the path which is identical to
P; up to x but then follows P;, and, similarly, let ]5] be the path which is identical
to P; up to x but then follows P,. For k & {i,j}, let P, = P,. Clearly, mapping



(Pi,P,,...,P,) to (P, P,,...,P,) is an involution.

However, if we want to count families of non-intersecting lattice paths with a
given total number of north-east turns, we cannot apply this involution, because
(P, Py,...,P,) and (P, Ps, ..., P,) may have a different total number of north-east
turns. The solution is to consider so called two-rowed arrays, as defined in Section 3
of Chapter 3, that are more general than paths.

In fact, the main idea of the proof of the Lindstrom-Gessel-Viennot Theorem
remains valid: The involution as defined in Section 4.4 on page 50 is still based on
the idea of switching tails, but, as mentioned before, acts on two-rowed arrays.

The last chapter, “The h-vector of a ladder determinantal ring cogenerated by
2 x 2 minors is log-concave”, is also concerned with families of non-intersecting
lattice paths with steps (1,0) and (0,1) that have a given number of north-east
turns. In fact, in the case of ladder determinantal rings, the ‘h-vector’ is exactly the
generating function )., hez* described above. It was conjectured that this h-vector
is log-concave, i.e., it satisfies h; 1h;y < h? for i € {1,2,...,p}. Corollary 4.6 on
page 73 provides an affirmative answer in the simplest case, where there is only a
single path. It remains a challenging problem to prove the conjecture for arbitrarily
large families of non-intersecting lattice paths.
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Chapter 1
A ‘nice’ bijection for a content formula
for skew semistandard Young tableaux

Abstract

Based on Schiitzenberger’s evacuation and a modification of jeu de taquin,
we give a bijective proof of an identity connecting the generating function of
reverse semistandard Young tableaux with bounded entries with the generat-
ing function of all semistandard Young tableaux. This solves Exercise 7.102
b of Richard Stanley’s book ‘Enumerative Combinatorics 2’.

1 Introduction

The purpose of this article is to present a solution for Exercise 7.102 b of Richard
Stanley’s book ‘Enumerative Combinatorics 2’ [5]. There, Stanley asked for a ‘nice’
bijective proof of the identity

Y e ( 3 qn<P>> T, 1)

R reverse SSYT P SSYT PEN/ 1
of shape A/ of shape \/u

with R;; <a+p; —1

where a is an arbitrary integer such that a + c(p) > 0 for all cells p € \/u.! Here,
and in the sequel, we use notation defined below:

Definition 1.1. A partition is a sequence A = (A1, Az, ..., Ay) with Ay > Ay > -+ >
A > 0, for some 7.

The Ferrers diagram of a partition A is an array of cells with r left-justified
rows and A; cells in row 7. Figure 1.a shows the Ferrers diagram corresponding to
(4,3,3,1). We label the cell in the i*" row and j* column of the Ferrers diagram of
A by the pair (i,7). Also, we write p € A, if p is a cell of A.

A partition g = (pq, f2, - . ., fts) is contained in a partition A = (A, A, ..., Ap),
if s <randp; <\ forie{l 2 ... s}

The skew diagram A/p of partitions A and p, where p is contained in A, consists
of the cells of the Ferrers diagram of A which are not cells of the Ferrers diagram

1n fact, this is the corrected version of the identity originally given in [5], to be found at
http://www-math.mit.edu/ rstan/ec. Stanley took it from [1], Theorem 3.1, where the formula
is stated incorrectly, too.
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Figure 1.

of p. Figure 1.b shows the skew diagram corresponding to (4,3,3,1)/(2,2,1). The
content c(p) of a cell p= (i,7) of A\/uis j —i.

Given partitions A and p, a tabloid of shape A/p is a filling T of the cells of the
skew diagram A/q with non-negative integers. 7, denotes the entry of T" in cell p.
The norm n(T') of a tabloid T is simply the sum of all entries of T. The content
weight w,(T') of a tabloid T'is 3 ,,, T, (a + c(p)), where a is a given integer such
that a + c¢(p) > 0 for all cells p € \/p.

A semistandard Young tableau of shape A/, short SSYT, is a tabloid P such that
the entries are weakly increasing along rows and strictly increasing along columns.

A reverse semistandard Young tableau of shape \/p is a tabloid R such that the
entries are weakly decreasing along rows and strictly decreasing along columns. In
Figure 1.c a reverse SSYT of shape (4,3,3,1)/(2,2,1) is shown.

2 A Bijective proof of Identity 1

In fact, we will give a bijective proof of the following rewriting of Identity 1:

n n 1
) qUD):( > qm))-Hm

P SSYT R reverse SSYT PEN 1
of shape \/p of shape A/
with Rijj; <a+p; —1t

_ 3 ¢ @),

(RT)
R reverse SSYT
of shape \/p
with Ri; < a+ p; — 1,
T tabloid
of shape \/u

So all we have to do is to set up a bijection that maps SSYT’x P onto pairs
(R,T), where R is a reverse SSYT with R;; < a + p; — ¢ and T is an arbitrary
tabloid, such that n(P) = n(R) + w.(T).

The bijection consists of two parts. The first step is a modification of a mapping
known as ‘evacuation’, which consists of a special sequence of so called ‘jeu de taquin
slides”. An in depth description of these procedures can be found, for example, in
Bruce Sagan’s Book ‘The symmetric group’ [4], Sections 3.9 and 3.11. We use



evacuation to bijectively transform the given SSYT P in a reverse SSYT () which
has the same shape and the same norm as the original one.

The second step of our bijection also consists of a sequence of — modified —
jeu de taquin slides and bijectively maps a reverse SSYT @ onto a pair (R,T) as
described above. This procedure is very similar to bijections discovered by Christian
Krattenthaler, proving Stanley’s hook-content formula. [2, 3]

01 9]9 )3 010
17 714 22 00
129 © TJoltl1l © 110" 102
121919 1210 [12]1]0] [0]0]1
n(.) = 43 n() = 43 () =19, w.() = 24
Figure 2.

A complete example for the bijection can be found in the appendix. There we
chose a = 6 and map the SSYT P of shape (4,4,4,3)/(2,2,1) on the left of Figure 2
to the reverse SSYT () in the middle of Figure 2, which in turn is mapped to the pair
on the right of Figure 2, consisting of a reverse SSYT R, where the entry of the cell
p = (i,]) is less or equal to a+ u; — i, and a tabloid 7" so that n(Q) = n(R) +w.(T).

In the algorithm described below we will produce a filling of a skew diagram step
by step, starting with the ‘empty tableau’ of the given shape.

Theorem 2.1. The following two maps define a correspondence between SSY T x
and reverse SSY T’z of the same shape \/u and the same norm:

© Given a SSYT P of shape \/u, produce a reverse SSYT @ of the same shape
and the same norm as follows:

Let @ be the empty tableau of shape \/p.

WHILE there is a cell of P which contains an entry
Let e be the minimum of all entries of P. Among all cells 7 with P, = e,
let p = (i,7) be the cell which is situated most right.

WHILE p has a bottom or right neighbour in P that contains an entry

Denote the entry to the right of p by « and the entry below p by y.
We allow also that there is only an entry to the right or below p and
the other cell is missing or empty.

If # < y, or there is no entry below p, then replace

elx] vle
b
Yy Y Yy

and let p be the cell (7,7 +1).

Y




Otherwise, if x > y, or there is no empty to the right, replace

?

ela] yla
LY by L€

and let p be the cell (i + 1, 7).
END WHILE.

Put @, equal to e and delete the entry of the cell p from P. Note that
cells of P which contain an entry still form a SSYT. In the proof below,
p will be called the cell where the jeu de taquin slide stops.

END WHILE.

@ Given a reverse SSYT @ of shape A/u, produce a SSYT P of the same shape
and the same norm as follows:

Let P be the empty tableau of shape A/pu.

WHILE there is a cell of () which contains an entry
Let e be the maximum of all entries of (). Among all cells 7 with @, = e,
let p = (i, 7) be the cell which is situated most left.
Set P, = e and delete the entry of the cell p from Q.

WHILE p has a top or left neighbour in P that contains an entry

Denote the entry to the left of p by x and the entry above p by y.
We allow also that there is only an entry to the left or above p and
the other cell is missing or empty.

If # > y, or there is no entry above p, then replace

Y Y
z]e by lelz|

and let p be the cell (7,7 — 1).
Otherwise, if x < y, or there is no entry to the left, replace

y e
wlel Y [aly)

and let p be the cell (i — 1, 7).
END WHILE.

The cells of P which contain an entry now form a SSYT. In the proof
below, p will be called the cell where the jeu de taquin slide stops.

END WHILE.

10
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Figure 3.

Proof. Note that what happens during the execution of the inner loop of & (@) is a
jeu de taquin forward (backward) slide performed on ) into the cell p, see Section 3.9
of [4].

First we have to show that &) is well defined. I.e., we have to check that after
each jeu de taquin forward slide, after the entry e in the cell p is deleted from P,
the cells of P which contain an entry form a SSY'T' as stated in the algorithm. This
follows, because after either type of replacement in the inner loop the only possible
violations of increase along rows and strict increase along columns in P can only
involve e and the entries to its right and below. When the jeu de taquin forward
slide is finished, p is a bottom-right corner of P, hence after deleting the entry in p
no violations of increase or strict increase can occur.

Next we show that & indeed produces a reverse SSYT. In fact, we even show
that the tabloid defined by the cells of @) which have been filled already, is a reverse
SSYT at every stage of the algorithm.

Clearly, every cell of @ is filled with an entry exactly once. Furthermore, at
the time the cell p is filled, the cells in @) to the right and to the bottom of p — if
they exist — are filled already, otherwise p would not be a bottom-right corner of
P. Because the sequence of entries chosen is monotonically increasing, rows and
columns of () are decreasing.

So it remains to show that the columns of () are in fact strictly decreasing.
Suppose that p; and p, are cells both containing the same minimal entry e, and p;
is right of ps.

When the jeu de taquin forward slide in & is performed into the cell p;, the
entry e describes a path from p; to the cell where the slide stops, which we will
denote by p}. Similarly, we have a path from p, to a cell pb,.

Now suppose p] is in the same column as, but below p}, as depicted in Figure 3.
Clearly, in this case the two paths would have to cross and we had the following
situation:

11



First, (the star is a placeholder for an entry we do not know)

* ¢ would be replaced by P44,
Z\y z|c

In this situation, z would have to be smaller then y.
Then, when the jeu de taquin forward slide into the cell py is performed, the
following situation would arise at the same four cells:

€ Y would have to be replaced by H4<,
2% 2|k

But this cannot happen, because then y would have to be strictly smaller than z.

It can be shown in a very similar manner that & indeed produces a SSYT. We
leave the details to the reader.

Finally, we want to prove that @ is inverse to &. Suppose that in &), a jeu
de taquin forward slide into the cell p containing the entry e is performed on P.
Suppose that the slide stopped in p/, @}, is set to e and the entry in p' is deleted
from P. Among the entries of (), e is maximal, because smallest entries are chosen
first in &. Furthermore, among those cells of ) containing the entry e, the cell p/
is most left. This follows, because the tabloid defined by the cells of () which have
been filled already, is a reverse SSYT, and the paths defined by the jeu de taquin
slides cannot cross, as we have shown above.

It is straightforward to check that in this situation the jeu de taquin backward
slide into p’ performed on P in @& stops in the original cell p. By induction we find
that @ 1is inverse to &. O

The second step of the bijection is just as easy:

Theorem 2.2. The following two maps define a correspondence between reverse
SSYT’x Q to pairs (R,T), where R is a reverse SSYT with R;; < a4+ p; —i and T
is an arbitrary tabloid, so that n(Q) = n(R) + w.(T'), Q, R and T being of shape

A p:

& Given a reverse SSYT @ of shape A/u, produce a pair (R,T) as described
above as follows:

Set R = () and set all entries of 7" equal to 0.
WHILE there is a cell 7 = (i, ) such that R, > a+ p; — i

Let e be maximal so that there is a cell 7 with R, — (a + C(T)) = e.
Among all cells 7 with R, — (a+¢(7)) =, let p = (i, j) be the cell which
is situated most bottom. Set R, = e.

WHILE e < R(i,j+1) ore< R(i+1,j)

12



Denote the entry to the right of p by x and the entry below p by y.
We allow also that there is only a cell to the right or below p and the
other cell is missing.

If x —1 > y, or there is no cell below p, then replace

e T by a:—le’

Y Y

and let p be the cell (7,7 + 1).
Otherwise, if y + 1 > x, or there is no cell to the right, replace

1
exbyy—i-:v’

Y &

and let p be the cell (i + 1, 7).
END WHILE.

Increase 1), by one.
END WHILE.

@ Given a pair (R, T) as described above, produce a reverse SSYT @ of shape
A/ p as follows:

Set @ = R.
WHILE there is a cell 7 = (i, 7) such that 7 # 0

Let e be minimal so that there is a cell 7 with @), = e and T, # 0.
Among these cells 7 let p = (i, j) be the cell which is situated most right.
Decrease T}, by one.

WHILE e + a4+ c(p) > Quj-1) or e +a+c(p) > Qu-1,)

Denote the entry to the left of p by x and the entry above p by y.
We allow also that there is only a cell to the left or above p and the
other cell is missing.

If y > 2+ 1, or there is no cell above p, then replace

Y by v,
T e e lx+1

and let p be the cell (7,7 — 1).

13



Otherwise, if x > y — 1, or there is no cell to the left, replace

4 by e,

T | e r ly—1

and let p be the cell (i — 1, 7).
END WHILE.
Increase @, by a + c(p).

END WHILE.

Remark. Because of the obvious similarity to jeu de taquin slides, we will call what
happens in the inner loop of & (@) a modified jeu de taquin (backward) slide into
p performed on R (Q).

Lemma 2.3. The two maps 2.2.& and 2.2.& are well defined. I.e. the tabloid R
produced by & 1s indeed a reverse SSYT with R;; < a+ p; — 1 and the tabloid Q)
produced by @ is indeed a reverse SSYT. Also, the equation n(Q) = n(R) + w.(T)
holds.

Furthermore, the following statement is true: Suppose that & performs a mod-
ified jeu de taquin slide on R into a cell py with R, = e. After this, suppose that
another modified jeu de taquin slide on R into a cell p, with the same entry e is
performed. Let py and pl, be the cells where the slides stop. Then pl is left of pl, or
oy = ph. A corresponding statement holds for Algorithm 2.2.&.

Proof. First of all, we have to prove that Algorithm 2.2.&) terminates. We required
that a + ¢(7) > 0 for all cells 7, which implies that every time when we replace the
entry in cell p by e (see the beginning of the outer loop of the algorithm) we decrease
maXT:(i,j)(RT —a— i; +1). It is easy to see that this maximum is never increased
in the subsequent steps of the algorithm.

It is easy to check that after every type of replacement within the modified jeu
de taquin slides, the validity of the equation n(Q) = n(R) + w.(T) is preserved.

So it remains to show that after every modified jeu de taquin slide of &), the
resulting filling R of \/y is in fact a reverse SSYT: We have that Q. — (a+c(7)) = e
is maximal at the very left of A/u, because rows are decreasing in (). Therefore,
when @), > a + u; — i, as required for the execution of the outer loop of &), we have

e=Q;— (a+c(n)>a+p—i—(a+p+1—1)=-1,

so e is non-negative. Furthermore, after either type of replacement during the mod-
ified jeu de taquin slide, the only possible violations of decrease along rows or strict
decrease along columns can involve only the entry e and the entries to the right and
below. By induction, R must be a reverse SSYT.

14
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The second statement of the lemma is shown with an argument similar to that
used in the proof of Theorem 2.1.

When the jeu de taquin forward slide in & is performed into the cell p;, the
entry e describes a path from p; to the cell p|, where the slide stops. Similarly, we
have a path from ps to p,,. We conclude that, if pj were strictly to the right of pl,
that these paths would have to cross. (See Figure 4). Hence we had the following
situation:

First, (the star is a placeholder for an entry we do not know)

R would be replaced by Lz

e T r—1 e

In this situation,  would have to be strictly smaller then z.
Then, when the modified jeu de taquin slide into ps is performed, the following
situation would arise at the same four cells:

- would have to be replaced by S

r—1 * e *

But this cannot happen, because then x would have to be at least as big as z is.
The corresponding statement for Algorithm 2.2.& is shown similarly. O

Proof of Theorem 2.2. It remains to show, that & and & are inverse to each other.
This is pretty obvious considering the lemma:

Suppose that the pair (R, T) is an intermediate result obtained after a modified
jeu de taquin slide into the cell p. After this, 7, is increased, where p' is the cell
where the slide stopped. Then the entry in p’ must be among the smallest entries of
R, so that T,y # 0, because the sequence of €’s in the cells chosen for the modified
jeu de taquin slides is monotonically decreasing. If there is more than one cell p
which contains a minimal entry of R and satisfies T, # 0, the lemma asserts that
the right-most cell was the last cell chosen for the modified jeu de taquin slide &).
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Hence it is certain that the right-most cell containing a minimal entry as selected
before the modified jeu de taquin slide of & is p'. It is easy to check, that the
replacements done in @ are exactly inverse to those in &). For example, suppose
the following replacement is performed in &):

e

Y

is replaced by

r—1

Y

Then we had x—1 > y and, because of strictly decreasing columns, z > x. Therefore,

in @, this is reversed and we end up with the original situation.

Similarly, we can show that & is inverse to @, too.

Appendix A: Step by step example

O

This appendix contains a complete example for the algorithms described above for
a SSYT of shape (4,4,4,3)/(2,2,1) and a = 6.

First the SSYT P on the left of Figure 2 is transformed into the reverse SSY'T
Q@ in the middle of Figure 2 using Algorithm 2.1.6). The example has to be read
in the following way: Each pair (P, Q) in the table depicts an intermediate result
of the algorithm. The cell of P containing the encircled entry is the cell into which
the next jeu de taquin slide is performed. The jeu de taquin path is indicated by

the line in Q.
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P Q P Q
0|1 @9 -
1[7 9 @
1/4]9 9 11
121919 | | [12]110
1D 1 9@ ?
417 @) 4
19]9 9 11
1219 [T [© | [2]1]0
@[ 7 ' ©) ©)
1]9 704
119 ) 9 11
1219 | 0 | 2]1]0
4]7 ' ©]9
9|9 704
@1 ©) 11
1219 | 0 | 2]1]0
4]7 9[9
9|9 704
9 r[1]1 O1]1
@ [ [@lo | 2010
@7
9|9
9 1]1
| @[ 1]0

The inverse transformation @ of the reverse SSYT () into the SSYT P can be traced
in the same table, we only have to start at the right bottom, where the tableau P
is empty, and work our way upwards to the top left of the table. Note that the jeu
de taquin paths are the same.

In the second step of the bijection, this reverse SSYT () is mapped onto a pair
(R,T), where R is a reverse SSYT with R;; < a + p; — i, T is a tabloid and
n(Q) = n(R) + w.(T).

819

7]8

5067
13/4]5

a. a+ p; —1 b. The tabloid with
entries a + ¢(p)

Figure 5.

First, the algorithm initialises R to () and sets all entries of 7" to zero. Using

17



modified jeu de taquin slides, R is then transformed into a reverse SSYT where
the entries are bounded as required. First the algorithm checks whether there are
still cells in R which are too large. For reference, we give the relevant bounds in
Figure 5.a. Then, for selecting the cell into which the modified jeu de taquin slide
is performed, we need to calculate R, — (a + c(p)). Again, for reference we display
these values for each cell in Figure 5.b.

Each row of the table below depicts an intermediate result of Algorithm 2.2.6).
The cells containing the encircled entry are the cells into which the modified jeu de
taquin slide will be performed, the cells containing the boxed entry indicate, where
the last modified jeu de taquin slide stopped. In the third column the jeu de taquin
path for the selected cell is indicated.

R T jeu de taquin path
9]9 0]0
704 0]0
@11 0/0]0
12]1]0 l0/0]0
@]9 0]0 .
714 00 |
41 1{0]0 -
12]1]0 l0/0]0
815 0]0 .
@2 0]0 |
4111 1/0]1
12]1]0 [0]0]0 .
®[5 0]0
2] 2 00 | '
4111 1/0]1 o
[2]1]0 [0]0]1
4]3 0]0 .
202 00 |
4710 110]2
12]1]0 0]0]1

Again, the inverse transformation & can be traced in the same table, starting at
the bottom, moving upwards. Now the cells containing the boxed entry are the
cells into which the next modified jeu de taquin slide will be performed, the cells
containing the encircled entry indicate where the last slide stopped. Of course, the
jeu de taquin paths are the same as for &).
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Appendix B: A complete matchup for SSYT’x of
shape (3,2)/(1) with norm 5, where
a =2

In the table below you find a complete matchup for SSYT’x of shape (3,2)/(1) with
norm 5 where a = 2. The first column contains all SSYT’x of shape (3,2)/(1)
and norm 5. In the second column, the corresponding reverse SSYT’x obtained
by evacuation are displayed. Finally, in columns three and four, the results of
Algorithm 2.2.6) can be found.

This table was produced with a Common-LISP-implementation of the algorithms
above, which can be found on the author’s homepage.?

p Q R T
|0(5)0|@|080|@<0(2)0’0(1)0>
|120|@|130|©<0(1)0’1(1)0>
|2g0|@|230|@<0(1)0’2(1)0>
|021|@|450|@<050’480>
|1g1|@|1?0|@<0(2)0’1(1)0>
|2gl|@|2%0|@<0(2)0’1(1)0>
|0g2|©|3(2)0|©<0(2)0’380>
|1(2)2|@|1(2)2|@<0(2)2’180>
|0:151|©|3(1)1|©<0(1)1’380>
|1§1|@|1§1|@<031’o?0>

’http://www.mat.univie.ac.at/ rubey/biject.lisp
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|033|@|082|@<0(1)0’081>
|1(1)3|@|181|@<0(1)1’1(1)0>
|0%2|@|2(2)1|@<0(2)17280>
|0(1)4|@|0§1|@<0(1)1’0(1)0>
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Chapter 2
Asymptotic analysis of vicious walkers
with arbitrary endpoints

Abstract

We derive asymptotic results for the number of configurations of vicious
and oo-friendly walkers with given starting points and varying end points,
both in absence and presence of a wall. Thus we extend previous results by
Krattenthaler, Guttmann and Viennot [J. Phys. A: Math. Gen. 33 (2000),
8835-8866]. In our proofs we follow closely arguments given in the latter
article.

1 Introduction

A configuration of wvicious walkers is a set of p non-intersecting lattice paths in Z?2
with steps (1,1) and (1, —1) that start at (0,2a;) and terminate at (m,e;), where
e; must have the same parity as m, for i € {1,2,...,p}. A family of lattice paths
is called non-intersecting, if no two paths have a lattice point in common. The
term wicious comes from the conception, that two walkers that arrive at the same
lattice site annihilate each other. An example of such a configuration is depicted in
Figure 1.a.

We will also consider vicious walkers that are additionally constrained by an
impenetrable wall, that is, non-intersecting lattice paths that must not run below the
xr-axis. In this paper we derive exact asymptotics for the number of configurations
of vicious walkers in both models, where the starting points are fixed but the end
points may vary, see Theorems 3.1 and 4.1.

As corollaries, we obtain asymptotics for the number of configurations of so called
oo-friendly walkers. In this model, any number of paths may share an arbitrary
number of lattice sites, but paths never change sides. In Figure 1.b an example for
a configuration in this model can be found. For more information on the various
models the reader is referred to the introduction of [5]. For the proofs, we closely
follow derivations which can be found in the latter article.

In Section 3 we will be concerned with the case where the lattice paths are un-
constrained. As ingredients for our calculations we will need the following: The
Lindstrom-Gessel-Viennot theorem on non-intersecting lattice paths, some knowl-
edge of Schur functions (the irreducible characters of special linear groups), the
Poisson summation theorem and Mehta’s integral.
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123
a. a configuration b. a configuration c¢. a family of non-
of vicious walkers of co-friendly walk- intersecting lattice

with a; = 0, ap = ers with a; = —2, paths correspond-
1, a3 =3, a4 =4 ay=0,a3 =2 and ing to the configu-
and m =6 as =4 ration in b.

Figure 1.

The other case, where the lattice paths must not go below the z-axis, is treated in
Section 4. There we additionally need the reflection principle by D. André. Instead
of Schur functions, we need the odd orthogonal characters and instead of Mehta’s
integral we need an ‘orthogonal’” analogue of Selberg’s integral.

In the following section we will state these theorems and give appropriate refer-
ences.

2 Ingredients

In this section we want to outline the method we use to obtain our results. Also,
we list the various theorems we apply.

First we consider the problem of enumerating non-intersecting lattice paths with
fized starting and end points. The Lindstrom-Gessel-Viennot determinant reduces
this problem to the problem of counting the number of single lattice paths with a
given starting and end point:

Theorem 2.1 (Lindstrom-Gessel-Viennot). Let Ay, Ay ..., A, and
E\, Es,...,E, be lattice points, with the property that if 1 < i < 7 < p and
1 <k <l <p, then any path from A; to E} must intersect any path from A; to E.
Then the number of families (Py, Pa, ..., P,) of non-intersecting lattice paths, where
P; runs from A; to E;, i € {1,2,...,p}, is given by

1<i,j<p
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where P(A — E) denotes the set of all lattice paths from A to E.
Proof. See [6, Lemma 1] or [4, Corollary 2]. O

In the case of vicious walkers without a wall, the number of lattice paths with
steps (1,1) and (1, —1) from (0, 2a) to (m,e) is equal to (%(mTeHa). In the case of
the presence of a wall, the reflection principle by D. André, see [1] or [2, page 22],
shows that the number of lattice paths with steps (1,1) and (1, —1) from (0, 2a) to
(m, e) which do not go below the z-axis equals (;(mme)ﬂ) — (1 (m+e+2)+a

Thus, returning to our problem, we obtain a sum over all possible end points of
the lattice paths in question of the respective Lindstrom-Gessel-Viennot determi-
nant. In a second step, we extract some factors from each of the determinants, such
that the leading term of the resulting determinant — viewed as polynomial in m — is
roughly the numerator of a Weyl character.

Lemma 2.2. Let A = (A, Ag,..., A\,) be a partition, i.e. a weakly decreasing se-
quence of non-negative integers. Then the Schur function sy(x1, xa, ..., x,) is defined
by
TR 21
AL, L2y ey - 3
g dety<ij<p(@] )
We have
Ni—i— N+
sa(1,1,...,1) = J and
)\( y 4y ) ) H ]_Z
1<i<j<p
= 11 o=
1<i<g<p
The odd orthogonal character so,\(xlil,xzil, e ,x;,tl, 1) is defined by
Ni+p—it1/2 —(Nitp—it+1/2
50 (x:tl =1 2E! 1) = det1<”<p(x] e xj( r /))
A ) IR ) - —(p—i
1 2 p det1<”<p(x§ i+1/2 — 1 (p +1/2))

and we have

Ai— 1= A 2p+14+ N —i+ N —
son(1,1,...,1) = H ! tJ H Pt Tt A 2,+,] J and
- J—1 L 2p+1—1—7
1<i<j<p 1<i<j<p
p
i-1/2 (- 1/2 p+1/2 N
1§dz'3't§p(xj H:v] - 1) H (v; — ;) (1 — x25).
1<i<j<p
Proof. See, for example, [3, (24.29) and (A.30 (ii))]. O
After that, it remains to approximate a sum of the form
Z fler s, ... ep)e” Zim G/m
e1<e<---<ep
where f is a polynomial in ey, ey, ..., e,. Applying the following lemma, which relies

on the Poisson summation theorem, we transform the sum into an integral:
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Lemma 2.3. Let N be a non-negative integer and let b : N — N be an arbitrary
function. Furthermore, let p : N = R be a function of at most polynomaial growth.
Then, as m tends to infinity,

o0

S plk)e i = / (e Py + 0(1),

k=b(m) b(m)
where the constant in the error term O(1) is independent of b.

Proof. See [5, Lemma Al]|. Note, however, that the second equality stated there is
incorrect in the case of arbitrary b. However, we do not need this equality. O

Finally, the integral can be computed by the following:

Lemma 2.4. Let k be a complex number with positive real part. Then

1 p
/ / . a:i|2k exp [—5 Zx?] dzxydxy . .. dx,
j=1

s Dk +1
— (2m)/ gﬁ (1)

o0 1<7,<]<p

Let ki, ko and k3 be a complex number with positive real part. Then

P P
o0 oo 1
/ / H|xj|k1+k3 H ‘:v —a? "2 exp [ 52 22| daydry .. dx,
-0 0 =1 1<e<j<p j=1
& lk DIk + & [ —1)ky+1
— (2 Rk H 2+ DD(ky + ks + ( >2+)' (2)
- k2+1)F( (k1 + ks + (1 —1)ka) + 1)
Proof. Proofs can be found in [7, (4 1) and Conjecture 6.1] O

3 Vicious walkers without a wall

In this section we derive results for vicious walkers with given starting points and
varying end points, where there is no wall restriction.

Theorem 3.1. The number of configurations of p wvicious walkers with starting

points (0,2a;), i € {1,2,...,p}, where each walker does m steps, is asymptotically
omp+p? /4, —p? [4+p/4 —p/4H1<z<]<p(aj — a;)

[T 20— 1)

x (14+0(m ~12(logm)? )) if p is even
omp+p? [4=1/4, —p?/4+p/4 *p/4+1/4H1<z<J<p(aj —a;)
1 2
P D)1
x (14+0(m “12(logm)? )) if p is odd

as m tends to infinity.
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If we set in the theorem above a; = 2i — 2 for i € 1,2,...,p, we regain [5,
Theorem 3], albeit with a worse error term:

Corollary 3.2. The number of stars with p branches of length m, i.e., configurations
of p vicious walkers with starting points (0,2i — 2), i € {1,2,...,p}, where each
walker does m steps, s asymptotically

p/2
2 Ayt e A e A TT (21 — 2))
I=1
x (14 O0(m *(logm)?)) if p is even
(p—1)/2
omp+p®[A=1/4,, —p® [A+p/4 —p/4+1/4 H (21 —1)!
=1
x (1L+0(m™*(logm)*)) if pis odd

as m tends to infinity.

Asymptotics for the model concerning oo-friendly walkers can also be deduced
from Theorem 3.1: Given a family of non-crossing paths with starting points (0, 2a;),
shifting the i** path by 2i — 2 units up, i € {1,2,...,p}, we obtain a family of
non-intersecting paths with starting points (0,a; + 2i — 2). An instance of this
correspondence is depicted in Figure 1.b and Figure 1.c. It is obvious, that this
correspondence is a bijection. Thus, if we replace a; in Theorem 3.1 by a; + 2t — 2

forv € 1,2,...,p, we obtain asymptotics for the number of configurations of oo-
friendly walkers with starting points (0, 2a;).

In this vein, if we set a; =41 —4 for i € 1,2,...,p in Theorem 3.1, we regain [5,
Theorem 4]:

Corollary 3.3. The number of co-friendly stars in the TK model with p branches
of length m, i.e., configurations of p vicious walkers with starting points (0,2i — 2),
i€ {l,2,...,p}, where each walker does m steps, and any number of walkers may
share an arbitrary number of steps, is asymptotically

/2
omp+3p®[4=p/2, . —p*/4+p/4 —p[4 H(gl —2)!
I=1
x (1+ O(m~%(log m)*)) if p is even

(p=1)/2
omp+3p? [4=p/2—=1/4,\ —p?[44p/4 —p/4+1/4 H (21 —1)!

I=1
x (1+ O(m~Y%(log m)*)) if p is odd

as m tends to infinity.
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Proof of Theorem 3.1. Given lattice points (0,2a) and (m, e), where e has the same

parity as m, there are (l(mTeHa) lattice paths with steps (1,1) and (1,—1) from
2

(0,2a) to (m,e). Applying Theorem 2.1, we obtain the following expression for

the number of families of non-intersecting lattice paths with starting points (0, 2a;),

i€{l1,2,...,p}, where each path has m steps:

m
E det e .
1<4,5<p L+ q;
—m—+2a1<e1<er<--<ep<m-+2ap 2

e;=m mod 2 for i€{1,2,...,p}

We now distinguish between two cases, depending on whether m is even or odd. The
computations in both cases are, however, rather similar. Therefore, we carry them
out in detail only for the first case: If m is even we may replace each summation
index e; by 2e; fori € {1,2,...,p}, and obtain

m
Y odnllen-)
1<,5<p 5} + a; — €;

—Ftar1<er<er<--<ep<F+ap

? m!
B 2 (H <%+ap—ej>!<%+ap+ej>!>

7%+a1§€1<€2<"'<6p§%+ap Jj=1
m Ap—Gi /M, ap+a;
- det <— +a, — ej) <— +a, + 6]') . (3)
1<i,j<p 2 2

Here, 2™ denotes the falling factorial power z(x —1)...(x —m +1). We will find
asymptotic approximations for the product and the determinant in the last line
of (3) separately.

We start by considering the determinant. We are only interested in its leading
term considered as a polynomial in m. However, it turns out to be necessary to
regard the determinant as a polynomial in m and the e, es,...,¢, in a first stage.
Truncation of each entry of the original matrix to its leading terms yields the deter-
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minant

q m ap=a; /1m, ap+a;
de ((F-a)" (5+9)
P

m m o m + 2e; 1
=\ (=) (F+a)) e (7_ > 7)
ey <i,j<p m e;

m+2e; m+ 2es m+2€p>

m—2e;’m—2e’ T m—2e,
p ap
m m m+2e;  m+ 2e;
_(H<2 63>(2+69>> ( H m — 2e; m—2ei>
j=1 1<i<yg<p
m—+2e; m+ 2ep m+ 2e,
X Slapptlap——pt2,m) | T 2e,"m —2ey " m — 2e,
p p
m m dm(e; — e;)
(115 ) (5+9) (I
(jl 2 2 1<i<j<p (m - 2€J>(m - 261)
m+2e; m+ 2ep m+ 2e,
X Sy ptLapoyopt2m) | T 2e,"m—2ey” " m — 2e,
p
— 9=2ar+2(5) 1 () (H(m — 2¢;)" Pt (m + er)ap) ( H (e; — €¢)>
j=1 1<i<j<p

m—+ 2e; m+ 2ey m + 2e,
m—2e;'m—2e’ m—2e,)

We now observe that both the original determinant in (3) and the result of the
calculation above have degree 2pa,, when considered as polynomials in m and
€1, €2,...,6p,. Thus, the coefficients of the leading terms must be equal, since we
omitted only terms of lower degree. Furthermore, both polynomials are divisible by
ngiqu(ej — €;), which implies that, considered as polynomials in m only, their
leading terms are equal, too.

On ignoring again terms whose contribution to the overall asymptotics are neg-
ligible and applying Lemma 2.2, we obtain that the determinant in (3) is equal
to

2—2pap+2(§>m2pap_(§) HISKJSP(ajp_la")(ej _ €i> (1 + O(l/m)) ) (4)
| il

Next, we want to find an asymptotic approximation for the product in Equa-
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tion (3). If e; is positive, we have

m!
(3 +ap —€;)!(F + ap +¢))!

€j

m! 1+ 2(ay +1—e¢j)
vy A Tr 200

m! 26? 3/, 2
— Wexp [—E +O(ej/m )}

1 1 1 2 .
— 2m+2ap+§m*2apf§7rf§ (]_ + O(l/m)) exp |:_&:| (1 + O(@?/m2)> )
m

If e; is negative, there is a similar calculation that leads to the same result. Now we
see that the dominant terms of the sum in (3) are those with —y/mlogm < e; <
ey < -+ < e, < y/mlogm: For these terms, we obtain

m!
(3 +ap =€)l (3 +ap +¢)!

p

7j=1

2 & ]
o 2p(m+2ap+%) 7p(2ap+%) 7172’ _ E 2 1 0O —1/2 1 3 ) 5
= m f exp m < ej ( + (m ( og m) )) ( )

. [ 2¢2
However, if, for example, ¢, > /mlogm, then exp —%] < m72lem  Because of

1+0(e3/m?) = O(m) for j € {1,2,...,p} and exp [—%] <lforje{1,2,...,p—1}
we obtain

m!
(5 +ap = €)!(5 +ap +¢)!

p
=0 (2p(m+2&p+%)m_p(20p—%)—210gm> '

7=1

Since the asymptotic approximation of the determinant as given in (4) is of polyno-
mial order in m, these summands are asymptotically negligible.
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Substituting Equations (4) and (5) into (3) we obtain

> (1 i
o1 (3 +ap =€) (5 +ap +¢5)!
m m
. det (—+ — -+1) (—— + -+1)
1§i,j§p< 2 @G ap—a; \ 2 @ ap+a;

P
_2: (m+2ap+3), —p(2ap+3) —2 _32:2
= opim apzmpapzﬂzexp[mllej]
]:

) 272pap+2(g)m2pap7(}2’> H1§i<j§p(aj —a;)(ej — €;) (6)

|} =

x (1+0(m*(logm)*))
_ op(mp—1) B ~E [licicjop(aj — ai)

2 2
™ prl 1
l=1"

XZ< 11 (ej—ei)> exp [_%iegl

1<i<j<p j=1

X (1 + O(mfl/z(log m)3)) ,

where the sum is over —y/mlogm < e} < ey < --- <e, < /mlogm. In fact, we
may extend the range of summation and sum over —y/mlogm < e; < ey < --- <
e, < y/mlogm, since the expression inside the sum is zero if any two e; should be
the same. It remains to find an asymptotic approximation of this sum. To achieve
this, we apply Lemma 2.3 successively for j = p,p—1,...,1 to each of the individual
sums. We start with the sum over e,:

\/ﬁigm ( H (ep — ei)> exp [—%’2’]

ep=€p_1 1<i<p

.S (H@p_ei)) exp {—%] x (140 (1/m))

ep=ep_1 \1<i<p
oo 26120
= / H (ep — €l') exp —E dep + O(l)
fp—1 \1<i<p

% (14+0(1/m)).

This integral is of at most polynomial growth in the variables e;,eq, ..., €e,_1, s0 we
can apply Lemma 2.3 again and iterate. The result is that we obtain

/ ( H (e — ei)) exp [—%ie?] deydesy . ..de, x (L+ 0O (1/m))

1<i<j<p
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where the integral is over —oo < e; < ey <.+ <e, < 0o. Now we substitute \/_fxz

for e;, and introduce — seemingly superfluous — absolute values:

(*1) 1<
(@) / ( H |lzj — $z|) exp [_5 Z@?] dxyd; ... dzy
1<i<j<p j=1

< (140 (1/m)).

With the absolute values, the integrand is invariant under permutations of the ;.
Thus, we can rewrite the last line as

(@) ("3

2

p!
) o0 1 p
/ / ( H |z —xl|) exp [—5 Zx?] drydxs .. . dx,

1<i<j<p J=1
X (14+0(1/m)).
Using (1) of Lemma 2.4 with k = 3 gives

0\ (73Y) P
(g) %(2@19/257”%;)1) x (1+0(1/m)).

Combining this expression with the last line of Equation (6) we obtain the claimed
expression for even m. The computation for odd m is similar. We leave the details
to the reader. O

4 Vicious walkers with a wall

In this section we derive results for vicious walkers with given starting points and
varying end points, where the walkers must not go below the z-axis.

Theorem 4.1. The number of configurations of p vicious walkers with starting
points (0,2a;), i € {1,2,...,p}, where each walker does m steps and must not go
below the x-axis, 1s asymptotically

pfl |
mp+p*=p/2,,—p*/2__—p/2 ! o , .
2 m T H(21+1)! H (aj — a;) H (@j +a;+1)
1=1 1<i<j<p 1<i<j<p
x (14 O(m~Y%(log m)*))
as m tends to infinity.
If we set in the theorem above a; = 2i — 2 for ¢ € 1,2,...,p, we regain [5,

Theorem 8], albeit with a worse error term:
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Corollary 4.2. The number of stars with p branches of length m which do not go
below the x-axis, i.e., configurations of p vicious walkers which do not go below the
x-axis with starting points (0,21 — 2), i € {1,2,...,p}, where each walker does m
steps, s asymptotically

p—1

omp+rP—p/2) (2 —p? (H 1!) (1+0(m "*(logm)*))

I=1
as m tends to infinity.

Similarly, if we set a; = 4i — 4 for i € 1,2,...,p in Theorem 4.1, we regain |5,
Theorem 9]:

Corollary 4.3. The number of oco-friendly stars in the TK model with p branches of
length m which do not go below the x- axis, i.e., configurations of p vicious walkers
which do not go below the x-axis with starting points (0,2i — 2), i € {1,2,...,p},
where each walker does m steps, and any number of walkers may share an arbitrary
number of steps, is asymptotically

as m tends to infinity.

More generally, if we replace a; in Theorem 4.1 by a; +2: —2 fori € 1,2,...,p,
we obtain asymptotics for the number of configurations of co-friendly walkers with
starting points (0, 2a;).

Proof of Theorem 4.1. Let (0,2a) and (m,e) be lattice points such that e has the
same parity as m. Applying the reflection principle of André, we find that there are
(%(mTeHa) — (%(m+?+2)+a) lattice paths with steps (1,1) and (1, —1) from (0, 2a) to
(m, e), which do not go below the z-axis.

By Theorem 2.1, we obtain the following expression for the number of families of
non-intersecting lattice paths with starting points (0, 2q;), i € {1,2,...,p}, which
do not go below the x axis and where each path has m steps:

2 o ((%(m _”;) +ai> N (%(m+€y7‘n+ 2) +ai>> '

0<e1<ea< -<ep<m+2ayp
e;=m mod 2 for i€{1,2,...,p}

Again we have to distinguish between two cases, depending on whether m is even
or odd. Because the computations in both cases are rather similar, we carry them
out in detail only for the case where m is odd: We replace each summation index e;
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by 2¢; — 1 for i € {1,2,...,p}, and obtain

Z det " " — " m
1<i,j<p % +a; —e; % +a; + ¢

0<er<ep<-<ep<THl tq,

> (I &
B e (2H 4+ a, —e)l(22 + a, +¢;)!

0<er1<er<--<ep< ™y Jj=1

m+1 P — 1 gptaitl
(o5 ) (25 )

m+1 W m— 1 ptaitl
| twte 5 +a,—e;+1 , (7)

where, 2™ denotes the falling factorial power x(z — 1)...(x —m + 1). We will
find asymptotic approximations for the product and the determinant in the last line
of (7) separately.

We start by considering the determinant. We are only interested in its leading
term considered as a polynomial in m. However, it turns out to be necessary to
regard the determinant as a polynomial in m and the e, es,...,¢, in a first stage.
Truncation of each entry of the original matrix to its leading terms yields the deter-
minant

d ¢ (m )apfai <m + >ap+ai+1 <m + )apfai <m >ap+ai+1
1S (N2 T 2 2 9 2 9
p apt3
m m
- (115 -) (5+))
j=1
m+ 2e;\ %2 m+2e;\ 42
x det S - —=
1<i,j<p m — 2e; m — 2e;
P ap+y
m m
- (115 ) (5+))
i3 —i+d
« det m + 2e; _(m + 2¢;
1<i,j<p m — 2e; m — 2e;

m + 2e; £l m + 2es =1 m+ 2e, £l
X SO0(ap—p+1,ap—1—p+2,...,a1) m ) m e m—72ep , 1.
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Applying Lemma 2.2 we obtain
P apty
m m
(1G5 (5+2))
i-1 —it3
< det m + 2e; B m + 2e;
1<i,j<p m — 2e; m — 2e;
m wts (m apts (m+ 2e; s m + 2e;
o e R R e (= SV
: 2 2 m — 2e; m — 2e;
7j=1
% H m—|—2ej_m+26i 1_m+2e¢m+26]~
m—2e;  m— 2e; m — 2e;m — 2e;

1<i<j<p

™

p

ap—p+1
— 9=2pap+2p’—p, > —p (H (m — 2e;) (m + 261))

J=1

() ()

We now observe that both the original determinant in (7) and the result of the
calculation above have degree p(2ap + 1), when considered as polynomials in m
and ey, es,...,e,. Thus, the coefficients of the leading terms must be equal. Fur-
thermore, both polynomials are divisible by (H?Zl ej> (ngiqu(e? — e?)), which
implies that, considered as polynomials in m only, their leading terms are equal,
too.

On ignoring again terms whose contribution to the overall asymptotics are neg-
ligible we obtain that the determinant in (7) is equal to

opaprnt oy prpLlicicip(% — 0) Lhicigip(ai+ a5 +1)

[T (20 +1)!

(H@j)( 11 (€§—€?)> (1+0@1/m)). (8)

1<i<j<p

2

Next, we want to find an asymptotic approximation for the product in Equa-
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tion (7). If e; is positive, we have

m!
(M5 +ap — ) ("5 + ap + )]
B m! ﬁ1+%(§+ap—ej+l)
(2 4a,))’ 17 1+ 26 +a+1)

! 2¢?
— 5 exp [—% + O(e?/mQ)}

("3 +a)!)
= om0ty ~200=5 =3 (1 4 O(1/m)) exp {—2%} (L+0(e3/m?)).

If e; is negative, there is a similar calculation that leads to the same result. Now we
see that the dominant terms of the sum in (7) are those with 0 < e¢; < ey < +-- <
e, < v/mlogm: For these terms, we obtain

j=1
2ap+3 2ap+3 z 2 ¢ 2 1/2 3
= 20l P2 t) PRt S exp | == "eF | (14 O(m™(logm)?®)) . (9)
7j=1
However, if e, > /mlogm, then exp [ ] m~?16™_ Because of 1+0(e2/m?) =

2
O(m)forjE{1,2,...,p}andexp[—# <1lforje{l,2,...,p— 1} we obtain

_O<2p m+ap—a1+3 )m plap—a1— 2) 210gm> )

Since the asymptotic approximation of the determinant as given in (8) is of polyno-
mial order in m, these summands are asymptotically negligible.
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Substituting Equations (8) and (9) into (7) we obtain

2
+1
- det <<L+ai—€j+1> < al+e]+1>
1<i,j<p 2 ap—a; 2 ap+ai+1
> ( —; — € + 1) )
ap—a; ap+ai+1

3 _ 3y _p
— E 2p(m+20p+2)m p(2ap+2)ﬂ- 2 exp

. 2—2pap+2p2—pm2pap—p2+p H1§i<j§p(a al) H1<z<j<p(al + a; + 1)
P20+ 1)

: (Hej) ( H (e? —e?)) (1+O(m’1/2(logm)3))

1<i<j<p

_ opmt2p?tl 2 P H1<z<j<p(a3 a;) H1<z<g<p(ai +a;+1)

o -T2+ 1)

2
( €]> ( (] — e?)) exp [—— Ze?
=1 1<i<j<p m j=1

1+ 0(m™?(logm)? ),
(10)
where the sum is over 0 < e; < ey <--- <e, < /mlogm. In fact, we may extend
the range of summation and sum over 0 < e; < ey <--- <e, < y/mlog, since the

expression inside the sum is zero if any two e; should be the same. It remains to
find an asymptotic approximation of this sum. To achieve this, we apply Lemma 2.3

successively for j = p,p—1,...,1 to each of the individual sums. We start with the
sum over e,:

mfmep ( I (- 6?)) exp [—Q—j]

ep=€p_1 1<i<p
< 2 2 26120
= Z €p H(ep_ei) exp | =" x (1+0(1/m))
€p=€p—1 1<i<p
00 262
([T - )ew |22 d+0m) xa+ou/m.
fp-1 1<i<p m
This integral is of at most polynomial growth in the variables e;,es, ..., e,_1, so we
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can apply Lemma 2.3 again and iterate. The result is that we obtain

/(ﬁ )( [T (-« )eXp[ Zp: ]deldeg...dep

1<i<j<p

x (140 (1/m))

where the integral is over 0 < e; < ey < --- < e, < 0co. Now we substitute @xl for
e;, and introduce — seemingly superfluous — absolute values:

(@)p2+p/(£[1|xj|> (15}19\95;—3; >exp [—%Xi: ]dxldxg dz,
x (1+0(1/m)).

With the absolute values, the integrand is invariant under permutations of the z;.
Thus, we can rewrite the last line as

(@>p2+p 1

2pp'

/ / (H |xj|> ( H |27 — a; ‘) exp [—%Zx?] daydxy . .. dx,
- X (140 (1/m)).

Using (2) of Lemma 2.4 with k; + k3 = 1 and ky = 1 gives

(@)p T ﬁ LD 1+ 01/m)).

2 20 p) I'(3/2)

Combining this expression with the last line of Equation (10) we obtain the claimed
expression for odd m. The computation for even m is similar, therefore we leave the
details to the reader. O
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Chapter 3
A determinantal formula for the Hilbert
series of one-sided ladder determinantal
rings”

Dedicated to Shreeram Abhyankar

Abstract

We give a formula that expresses the Hilbert series of one-sided ladder de-
terminantal rings, up to a trivial factor, in form of a determinant. This allows
the convenient computation of these Hilbert series. The formula follows from
a determinantal formula for a generating function for families of nonintersect-
ing lattice paths that stay inside a one-sided ladder-shaped region, in which
the paths are counted with respect to turns.

1 Introduction

Work of Abhyankar and Kulkarni [1, 2, 20, 21|, Bruns, Conca, Herzog, and Trung
[4, 5,6, 11] showed that the computation of the Hilbert series of ladder determinantal
rings (see Section 2 for precise definitions and background) boils down to counting
families of n nonintersecting lattice paths with a given total number of turns in
a certain ladder-shaped region. Thus, this raises the question of establishing an
explicit formula for the number of these families of nonintersecting lattice paths.
In the case that there is no ladder restriction, Abhyankar [1, (20.14.4)] has found
a determinantal formula for the Hilbert series (actually not just one, but a great
number of them). As was made explicit in [6, 7, 21, 22|, he thereby solved the afore-
mentioned counting problem in the case of no ladder restriction. For direct proofs
of the corresponding counting formula see [14, 22]. In the case of one-sided ladders,
Kulkarni [20] established an explicit solution to the counting problem for n =1 (i.e.,
if there is just one path; this corresponds to considering one-sided ladder determi-
nantal rings defined by 2 x 2 minors). For arbitrary n, a determinantal formula for
the number of families of n nonintersecting lattice paths in a one-sided ladder, where
the starting and end points of the paths are successive, was given by the first author
and Prohaska [17] (this corresponds to one-sided ladder determinantal rings defined
by (n 4+ 1) X (n + 1) minors), thereby proving a conjecture by Conca and Herzog
6, last paragraph]. Finally, Ghorpade [9] has recently proposed a solution to the
counting problem with more general starting and end points of the paths, even in the

“together with Christian Krattenthaler
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case of two-sided ladders (this corresponds to two-sided ladder determinantal rings
cogenerated by a given minor). This solution is based on an explicit formula for the
counting problem for one path (i.e., n = 1), which is then summed over a large set
of indices with complicated dependencies. Thus, this solution cannot be regarded as
equally satisfying as the determinantal formula of Abhyankar and the determinantal
formula of the first author and Prohaska, which are, however, only formulas in the
case of a trivial ladder and in the case of a one-sided ladder, respectively.

The purpose of this paper is to provide a determinantal formula for the case
of one-sided ladders where the starting and end points are more general than in
[17] (see Corollary 3.2; this corresponds to one-sided ladder determinantal rings
cogenerated by a given minor). This formula must be considered as superior to the
aforementioned one by Ghorpade [9] in this case (i.e., the case of one- instead of two-
sided ladders). It specializes directly to Abhyankar’s formula [1, (20.14.4), L = 2,
k=2, with F®?(m,p,a,V) defined on p. 50] in the case of no ladder restriction. On
the other hand, if starting and end points are successive, then it does not specialize
to the formula in [17]. (As already mentioned in Section 7 of [17], it seems that the
formula in [17] cannot be extended in any direction.)

The entries in the determinant in our formula (5), respectively (6), are given
by certain generating functions for two-rowed arrays, which are easy to compute as
we show in Section 5. (The concept of two-rowed arrays was introduced in [12, 18]
and developed to full power in [13, 14]. Also the proof of the main theorem in [17]
depended heavily on two-rowed arrays.)

In the next section we recall the basic setup. In particular, we define ladder
determinantal rings and state, in Theorem 2.1, the connection between the Hilbert
series of such rings and the enumeration of nonintersecting lattice paths with respect
to turns. Our main result, the determinantal formula for the Hilbert series of one-
sided ladder determinantal rings cogenerated by a given fixed minor, is stated in
Corollary 3.2 in Section 3. It follows from a determinantal formula for counting
nonintersecting lattice paths in a one-sided ladder with respect to turns, where the
starting and end points are allowed to be even more general than is needed for
our main result. This counting formula is stated in Theorem 3.1, and it is proved
in Section 4. In Section 5 we show how to compute the generating functions for
two-rowed arrays that appear in the determinant of our formula.

2 Ladder determinantal rings and the enumera-
tion of nonintersecting lattice paths with re-

spect to turns
Let X = (Xi;)o<i<p, o<j<a be a (b+ 1) X (a + 1) matrix of indeterminates. Let
= (Vi )o<i<b, 0<j<a be another (b + 1) x (a + 1) matrix with the property that

Yii =X or0,and if Y;; = X;; and Yy = Xy, where ¢ <7 and 7 < j, then
Y = X, forall s, with i < s <7 and j <t < j. An example for such a matrix

39



Y, with b = 15 and a = 13 is displayed in Figure 1. (Note that there could be 0’s in
the bottom-right corner of the matrix also.) Such a “submatrix” Y of X is called a
ladder. This terminology is motivated by the identification of such a matrix Y with
the set of all points (j, b— i) in the plane for which Y; ; = X; ;. For example, the set
of all such points for the special matrix in Figure 1 is shown in Figure 2. (It should
be apparent from comparison of Figures 1 and 2 that the reason for taking (j, b — i)
instead of (i, 7) is to take care of the difference in “orientation” of row and column
indexing of a matrix versus coordinates in the plane.) In general, this set of points
looks like a (two-sided) ladder-shaped region. If, on the other hand, we have either
Y00 = Xop or ¥y, = X3, then we call Y a one-sided ladder. In the first case we call
Y a lower ladder, in the second an upper ladder. Thus, the matrix in Figure 1 is an
upper ladder.

0 0 0 0 0 0 0 0 X8%X,X,10%,13,1223,3
0 0 0 O O 0 0O 0 XgXo0X,10XuX,12X,13
0 0 0 0O 0 0 0 0 XsXo0Xi10%n1X%1rXi
0 0 0 0 0 0 0 X7X:8X0X10%81X812X313
0 0 0 0 0 0 X6X,7Xs8X,0X,10%1X12X,13
0 0 0 0 0 X5,5X.,6X%,7%,8X,0%,10%,1X,12X,3
0 0 0 0 X,4X%,5 X,6X%,7%,8 %,92%,10%,11%,12X,13
0 0 0 0 XaXe5X,6X7 X8 X,0X,10% 1X,120X,13
0 0 0 0 X4M5X6X7X88X02X810%81X812X813
X0,0 X,1 X2 X9,3 X0,4 X0,5 Xo,6 Xo,7 X0,8 %0,0%0,10%,11 X0,12X0,13
X10,0X10,1 X10,2 X10,3 X10,4 X10,5 Xi0,6 X10,7 X10,8 X10,9-X10, 10X10, 11X10, 12X10, 13
Xn1,0X1,1 X112 X11,3 X014 X115 X116 X1, 7 X118 X101, 10X1n, 1K1, 12X01 13
X12,0X12,1 Xi2,2 X12,3 X12,4 X12, 5 Xi2, 6 X12, 7 X12,8 X12,0X12, 10X12, 1X12, 12X12, 13
X13,0X13,1 X13,2 X13,3 X13,4. X13,5 X13, 6 X13, 7 X13,8 X13,0X13, 10X13, 11X13, 12X13, 13
X14,0X14,1X14,2 X14,3 X14,4 X145 X146 X4, 7 X14,8 X14,0X14, 10X14, 11514, 12X04 13

Xi5,0X15,1 X15,2 X15,3 X15,4 X155 X15,6 X15, 7 X15,8 X15,9X15, 10X15, 11X15, 12X15, 13

Figure 1.

Now fix a “bivector” M = [uy, us, ..., uy | v1, 02, ..., v,] of positive integers with
U < up < -0 < up and v < vy < -0 < v,. Let K[Y] denote the ring of all
polynomials over some field K in the Y;;’s, 0 < i < b, 0 < j < a, and let I;(Y)
be the ideal in K[Y] that is generated by those ¢ x t minors of Y that contain only
nonzero entries, whose rows form a subset of the last u; — 1 rows, or whose columns
form a subset of the last v; — 1 columns, ¢t = 1,2,...,n + 1. Here, by convention,
Up41 18 set equal to b+ 2, and v,41 is set equal to @ + 2. (Thus, for t = n + 1 the
rows and columns of minors are unrestricted.) The ideal I),(Y) is called a ladder
determinantal ideal cogenerated by the minor M. (That one speaks of ‘the minor A’
has its explanation in the identification of the bivector M with a particular minor
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14 o000 O0O
13 00000
12 o000 OGOO
11 o000 0OCGOOS
10 00000OOGOS

N W GTO =1 00 ©
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

011 2345678910111213

Figure 2.

of Y, cf. [11, Sec. 2]. It should be pointed out that our conventions here deviate
slightly from the ones in [11]. In particular, we defined the ideal I);(Y") by restricting
rows and columns of minors to a certain number of last rows or columns, while in
[11] it is first rows, respectively columns. Clearly, a rotation of the matrix by 180°
transforms one convention into the other.) The associated ladder determinantal
ring cogenerated by M is Ry (Y) := K[Y]/Iy(Y). (We remark that the definition
of ladder is more general in [1, 2, 5, 11]. However, there is in effect no loss of
generality since the ladders of [1, 2, 5, 11] can always be reduced to our definition
by discarding superfluous 0’s.)

When Abhyankar introduced ladder determinantal rings in the early
1980s, he was motivated by the study of singularities of Schubert varieties. Indeed,
as was shown recently by Gonciulea and Lakshmibai in [10] (see also [3, Ch. 12]),
the associated varieties (called ladder determinantal varieties) can be identified with
opposite cells of certain Schubert varieties of type A. This connection allowed them
to identify the irreducible components of such Schubert varieties in many cases, thus
making substantial progress on a long-standing problem in algebraic geometry.

Results of Abhyankar [1, 2] or Herzog and Trung [11] allow to express the Hilbert
series of the ladder determinantal ring Ry, (Y’) in combinatorial terms. Before we
can state the corresponding result, we need to introduce a few more terms.

When we say lattice path we always mean a lattice path in the plane consisting
of unit horizontal and vertical steps in the positive direction, see Figure 3 for an
example. We shall frequently abbreviate the fact that a lattice path P goes from A
to Eby P: A— E.

Also, given lattice points A and E, we denote the set of all lattice paths from
Ato Eby P(A— E). A family (P, P, ..., P,) of lattice paths P;, i = 1,2,...,n,
is said to be nonintersecting if no two lattice paths of this family have a point
in common. Given n-tuples of lattice points A = (AN A AM) and E =
(EM, E@ .. E™) we denote the set of all families (Py, P,. .., P,) of noninter-
secting lattice paths, where P; runs from A% to E® i =1,2,...,n, by P*(A — E).

A point in a lattice path P which is the end point of a vertical step and at the
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Py
®
Figure 3.

same time the starting point of a horizontal step will be called a north-east turn
(NE-turn for short) of the lattice path P. The NE-turns of the lattice path in
Figure 3 are (1,1), (2,3), and (5,4). We write NE(P) for the number of NE-turns
of P. Also, given a family P = (P, P», ..., P,) of paths P;, we write NE(P) for the
number > " NE(P;) of all NE-turns in the family.

Our lattice paths will be restricted to ladder-shaped regions L corresponding
to the nonzero entries of a given matrix Y in the way that was explained earlier
(cf. Figures 1 and 2). We extend our lattice path notation in the following way. By
PL(A — E) we mean the set of all lattice paths P from A to E all of whose NE-turns
lie in the ladder region L. (It should be noted that, in the case of a two-sided ladder,
it is possible that a path is not totally inside L while its NE-turns are. However, in
the case of an upper ladder L, which is the case of interest in our paper, a path is
inside L if and only if all of its NE-turns are.) Similarly, by P} (A — E) we mean
the set of all families (P, P, ..., P,) of nonintersecting lattice paths, where P; runs
from A® to EW and where all the NE-turns of P; lie in the ladder region L.

Finally, given any weight function w defined on a set M, by the generating
function GF(M;w) we mean ) ., w(z).

==Y Y/

associated ladder region, i.e., Y;; = X;; if and only if (j,b—1i) € L. Let M =
[y, U9, ..oty | V1,02, ..., 0,] be a bivector of positive integers with u; < uy <

< Uy and vy < vy < oo+ < v,. Furthermore, let AD = (0,u,4,_; — 1) and
EU) = (a—vpy1i+1,0),i=1,2,...,n. Then, under the assumption that all of the
points AW and EW, i =1,2,... n, lie inside the ladder region L, the Hilbert series
of the ladder determinantal ring Ry (Y) = K[Y]/In(Y) equals

= . GF (P (A — E); 2NEO)

2 : l __ L )

dim ¢ RM(Y)KZ - (1 — Z)(a+b+3)n— i (uitvg)? (1)
(=0

where Ry (Y), denotes the homogeneous component of degree ( in Ry (Y), and
where, according to our definitions, GF (P} (A — E); 2NE0) is the generating func-
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tion S p 2NE®) for all families P = (Py, Py, ..., P,) of nonintersecting lattice paths,
P, running from AW to EW such that all of its NE-turns stay inside the ladder
region L.

Remark. (a) The condition that all of the points A® and E® lie inside the ladder
region L restricts the choice of ladders. In particular, for an upper ladder it means
that Y3y, 110 = Xp—u,+1,0 and Y 4—p, 41 = Xo,4—v,+1, Which will be relevant for us.
Still, one could prove an analogous result even if this condition is dropped. In that
case, however, the points A® and E® have to be modified in order to lie inside L
and, thus, make the right-hand side of formula (1) meaningful.

(b) For an extension of Theorem 2.1 for the case of two-sided ladders see [24,
Theorem 3.1].

Sketch of Proof. In [17, proof of Theorem 2], we gave two proofs of this assertion in
the special case of a one-sided ladder and u; = v; = 4,1 =1,2,...,n (cf. Example (1)
on p. 10 of [11]). The first proof followed basically considerations by Kulkarni [20, 21]
(see also [8]), and was based on an explicit basis for Ry, (Y") given by Abhyankar [1,
Theorem (20.10)(5)]. The second proof was based on combinatorial descriptions of
the dimensions Ry (Y"), of the homogeneous components of Ry (Y) due to Herzog
and Trung [11, Cor. 4.3 4+ Lemma 4.4]. Both proofs carry over verbatim to our more
general situation because both Abhyankar’s as well as Herzog and Trung’s results
are in fact theorems for the general ladder determinantal rings that we consider here.
(However, the reader must be warned that the explicit form of Abhyankar’s basis
was misquoted in [17]. The correct assertion is that, given a multiset S as described
in [17], the associated basis element is the product of a certain monomial in the X;;’s
and a certain minor of the matrix Y, see [1, definition of w,(t) in Theorem (20.10)]
or [8, Theorem (6.7)(iii)] Also, the definition of the multisets S contained an error:
Item 2 at the bottom of p. 1019 in [17] must be replaced by: The length of any
sequence (i1, j1), (i2,72), - -, (ix, ji) of elements of S is at most n. The subsequent
argument was however based on this corrected definition.) O

3 The determinantal formula

In view of Theorem 2.1, the computation of Hilbert series of ladder determinantal
rings requires to solve the problem of counting families of nonintersecting lattice
paths in a ladder-shaped region with respect to turns. We provide such a solution
for one-sided ladders in Theorem 3.1. In order to formulate the result, we need to
introduce the notion of two-rowed arrays.

From now on we restrict our attention to one-sided ladders. Without loss of gen-
erality it suffices to consider upper ladders. We encode upper ladder-shaped regions
(such as the one in Figure 2) concisely by means of weakly increasing functions as
follows: given an upper ladder region L, let f be the weakly increasing function
from [0, a] to [1,b+ 1] with the property that it describes L by means of

L={(z,y):x€[0,a) and 0 <y < f(x)}. (2)
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Here, by [c,d] we mean the set of all integers > ¢ and < d. In essence, the function
f describes the upper border of the region L. For example, the function f corre-
sponding to the ladder region in Figure 2 (where a = 13 and b = 15) is given by
FO)=7,f(1) =7 f2) =7 f(3) =7, f(4) =10, f(5) =11, f(6) =12, f(7) =13,
f(8) =16, f(9) =16, f(10) = 16, f(11) =16, f(12) = 16, f(13) = 16.

By a two-rowed array we mean two rows of integers

a_jy1 A qgy2 ... G131 Qo a1 ... Qg (3)
by ... by,

where entries along both rows are strictly increasing. We call [ the type of the two-
rowed array. We allow [ to be also negative. In this case the representation (3) has
to be taken symbolically, in the sense that the first row of the two-rowed array is
(by —1) shorter than the second row, i.e., looks like

a_jy1 ... Qg
4
b1 b2 b,l b7l+1 bk; ( )

We define the size |T'| of a two-rowed array 7" to be the number of its entries.
(Thus, the size of the two-rowed array in (3) is [+ 2k, as is the size of the one in (4).)
We extend this definition and notation to families T = (71,75, ...,T,) of two-arrays
by letting |T| denote the total number |T1| + |T%| + - - - 4+ |T},| of entries in T.

Now we define the basic set of objects which is crucial in our formulas. Given
a function f as above, and pairs A = (a1, a3) and E = (g1,&5), we denote by
TA(l; A, E; f,d) the set of all two-rowed arrays of type [ such that

e the entries in the first row are bounded below by «a; and bounded above by
€1,

e the entries in the second row are bounded below by ay and bounded above by
€2,

e if the two-rowed array is represented as in (3) (respectively (4)), we have

bs < f(aerd)v (5)

for all s such that both b, and a4 exist in the two-rowed array.

If we want to make the lower and upper bounds transparent, then we will write
such two-rowed arrays in the form

Oélé a—j4+1 Ad—y42 ... QG-1 Qyp ar ... Qg §€1 (6)
OCZS b1 bk; §52-

Our key theorem is the following.
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Theorem 3.1. Let n,a,b be positive integers and let L be an upper ladder-shaped
region determined by the weakly increasing function f :[0,a] — [1,0+ 1] by means
of (2). For convenience, extend f to all negative integers by setting f(x) := f(0) for
x < 0. Furthermore, let AV = (Agi),Ag)) and B® = (Ey),Eéi)) fori=1,2....n
be lattice points in the region L satisfying

flz) = f(Agl)) for all x < Agl), (7)

and
AV <A <A AD > AP > s Al (8)

and
EV<EP <. < B, BV >ED >..> B 9)

Then the generating function ZzNE(P), where the sum s over all families P =
(P, Py, ..., P,) of nonintersecting lattice paths P;: AW — E®) i =12, ... n lying
in the region L, can be expressed as

GF (P} (A — E); 2N"0)
— — o A fo(s). — 1) 21/2

et (GF(TA( = 5 A0 B0 1 s~ 1):21%),(10)
where A® = A0 4 (—i+1,0) and E(i) = EW 4 (—i,i—1),i=1,2,...,n. Here,
by our definitions, GF(TA(t — s; AO B f s —1); 21/2) is the generating function
S 2TV2 where the sum is over all two-rowed arrays of the form (6) with | =t — s,
d=s5—1, 01 =AY —i+1, ap =AY +i, e, = EY —i, and e, = E) +i — 1, which
satisfy (5).

Remark. (a) The condition (7) is equivalent to saying that to the left of A which
by (8) is the left-most starting point of the lattice paths, the boundary of the ladder
region is horizontal. Clearly, this can be assumed without loss of generality because
this part of the ladder (i.e., the ladder to the left of AM) does not impose any
restriction on the lattice paths, and, hence, on the left-hand side of (10).

(b) The formula (10) clearly reduces the problem of enumerating families of
nonintersecting lattice paths in the ladder region L with respect to NE-turns to
the problem of enumerating certain two-rowed arrays. We are going to address this
problem in Section 5.

Thus, if we combine Theorems 2.1 and 3.1, we obtain the promised determinantal
formula for the Hilbert series of one-sided ladder determinantal rings.

>exY V>

associated ladder region, i.e., Y;; = X;; if and only if (j,b—1i) € L, and let f :
[0,a] — [1,b+ 1] be the function that describes this ladder region by means of (2),
i.e., Yi; =X if and only if b—i < f(j). For convenience, extend f to all negative
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integers by setting f(x) := f(0) for x < 0. Let M = [uy,us, ..., Uy | V1,0V, ..., 0y
be a bivector of positive integers with uy < ug < +++ < Uy and vy < vy < -+ < Uy
such that Yy_y, 410 = Xp—up+10 and Yo a—v,+1 = Xog—v,+1 (¢f- Remark 2.(a) after
Theorem 2.1). Furthermore, we let AY = (=i 4+ 1upi1_ +i — 1) and B0 =
(@—vpp1 i —i+1,b+i—1),i=1,2,...,n. Then the Hilbert series of the ladder
determinantal ring Ry (Y) = K[Y]/1(Y) equals

> dimg Ry (V) 2"
(=0

_detics i< (GF(TA(t — s; AW EG); s —1); 2H112))
N (1 — 2)(arbrsn—si, (uten) -

(11)

Remark. (a) Theorem 3.1 specializes to Theorem 1 in [14] in the case of a trivial
ladder (i.e., if the function f is equal to b+ 1 for all =). For, in that case, by (37)
the generating functions GF(TA(t — s; AL By f,s — 1); 2I172) can be expressed in
terms of binomial sums. To see that the resulting formula is indeed equivalent, one
extracts the coefficient of z%.

(b) For the same reason, Corollary 3.2 specializes to Abhyankar’s formula [1,
(20.14.4), L = 2, k = 2, with F®?(m,p,a,V) defined on p. 50] in the case of a
trivial ladder. Although Abhyankar’s formula gives an expression for the Hilbert
function (instead of for the Hilbert series), it is easy to see that it is equivalent to
ours in this special case.

(c) The formula for the Hilbert series in [17, Theorem 2] addresses the special
case u; = v; = 4, 1 = 1,2,...,n. However, Corollary 3.2 does not generalize this
formula, as it does not directly specialize to Theorem 2 in [17]. Whereas in the latter
formula the entries of the determinant are generating functions for paths, there is
no such interpretation for the entries of the determinant in (11).

(d) Unfortunately, we do not know how to generalize Theorem 3.1, and, thus,
Corollary 3.2, to the case of two-sided ladders. It seems that a completely new idea
is needed to find such a generalization. In particular, the combinatorial formula [24,
Theorem 3.1] for the Hilbert series in the case of two-sided ladders, on which such
a generalization would have to be based, is already considerably more complicated
than its special case for the case of one-sided ladders, stated in Theorem 2.1.

(e) More modest, but equally desirable, would it be to find an extension of
Corollary 3.2 in the one-sided case to ladders L and bivectors M which do not satisfy
the conditions of the statement, i.e., for which either ¥, ,, 110 =0,0r Y 44,41 =0,
or both. This would require to find an extension of Theorem 3.1 to situations where
the inequality chains (8) and (9) may be relaxed so that some starting and end
points are allowed to lie on the boundary of the ladder region L (cf. Remark 2.(a)
after Theorem 2.1). It seems again that a completely new idea is needed to find
such an extension.

(f) In Section 5 of [17] it is shown that the proof of the main counting theorem
yields in fact a weighted generalization thereof. An analogous weighted general-
ization of Theorem 3.1 can be obtained as well, which is again directly implied by
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the proof of Theorem 3.1 in Section 4. However, we omit the statement of this
generalization for the sake of brevity.

Ezample 3.3. Let a = 13, b = 15, n = 4, let Y = (Y;;) be the matrix of Fig-
ure 1 and M = [1,2,4,6 | 1,2,3,6]. Our formula (11) gives for the Hilbert se-
ries of Ry (Y) = K[Y]/Iy(Y), using (45) for determining the generating function
dore TA(A, B3 f.d) 21/ for two-rowed arrays T in the corresponding ladder region L of
Figure 2,

(147124255622 +6183223+11157622%+1575000525 +17839027926 +164713717427
+12534233703284-792452718792° +418852424787210 +1859941402206211 +-69659878061432 12
+220716223135672124+592987065140832 4 +135299444287353215 +2624005710756622 16
+432640455645309217 +606103694379729218 +-72053517043055721° +-7252897983045022 20
+61623002296939222! +439998448014899222 4262469031030333223 +129776697745621 224
+52622863698472225 +-17241967478923226 +4468021840695227 +885721405230228

+12690172040022° +11760999250230 4532021875231 ) /(1—2)%9.

4 Proof of Theorem 3.1

The basic idea of the proof is simple. It largely follows the proof of Theorem 4
n [14]. As a first step, we expand the determinant on the right-hand side of (10)
according to the definition of a determinant, see Subsection 4.1. Thus, we obtain a
sum of terms, each of which is indexed by a family of two-rowed arrays, see (12).
Some of the terms have positive sign, some of them negative sign. In the second
step, we identify the terms which cancel each other, see Subsection 4.2. Finally, in
the third step, we identify the remaining terms with the families of nonintersecting
lattice paths in the statement of the theorem, see Subsection 4.3.

However, the details are sometimes intricate. To show that the terms described
in Subsection 4.2 do indeed cancel, we define an involution on families of two-rowed
arrays in Subsection 4.4. (This involution is copied from [14, Proof of Theorem 4].)
In order that our claims follow, this involution must have several properties, which
are listed in Subsection 4.5. While most of these are either obvious or are already
established in [14] and [23], we are only able to provide a rather technical justification
of the one pertaining to the ladder condition. This is done in Subsection 4.6.
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4.1 Expansion of the determinant

Let &,, denote the symmetric group of order n. We start by expanding the deter-
minant on the right-hand side of (10), to obtain

det (GF(TA(t — s; AV EW; fs —1);211/2))

1<s5,t<n

=" sguo [[ GF(TA(o(i) — i; A BO; fi —1);217?)

O'EGn =1
= Z sgno 2T, (12)
(T,0)

where the sum is over all pairs (T, o) of permutations o in &,,, and families T =
(11, Ty, ...,T,) of two-rowed arrays, T; being of type o(i) — ¢ (i.e., the second row
containing k; entries and the first row containing k; + o (i) — i entries, for some £;),
and the bounds for the entries of T; being as follows,

7o) (@) (4) (é) (i)
14}1 < A g(iytitr - af e Gy S ~1Z (13)
A < b0 b < B,
with the property that
b < fal ), s=1,2, . ki —it1, (14)

1=1,...,n.

4.2  Which terms in (12) cancel?

Now we claim that the total contribution to the sum (12) of the families (77, T, ..., T,)
of two-rowed arrays as above which have the property that there exist 7; and Tj,4,
T; represented by

1%50(2)) S a—a(i)-i—i—i—l AT .. A S E:'Y) (15&)
AL < by e < EBY,
and T;j,, represented by
%ga(z}l)) < Copliplypivz o G ..o < ESH) (15b)
Aga(H»l)) S dl L dl S E£l+1)7

and indices I and J such that

cy <ap (15¢)
bi—1 <dy (15d)

and
1<I<k+1, 0<J<I, (15¢)
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equals 0. The inequalities (15¢) and (15d) should be understood to hold only if
all variables are defined, including the conventional definitions ayy; := EP + 1,
by := AV _ 1, and Cg(itl)4itl = AP _ 1 (These artificial settings apply for
I'=k+1,I=1,and J = —o(i+ 1)+ i+ 1, respectively. It should be noted that
the indexing conventions that we have chosen here deviate slightly from [14, Sec. 3,
proof of Theorem 4], but are completely equivalent.)

We call the point (a;,dy) a crossing point of T; and T;, 1, and, more generally, a

crossing point of the family T.

4.3 The remaining terms correspond to nonintersecting lat-
tice paths

Suppose that we would have shown that the contribution to (12) of these families of
two-rowed arrays equals zero. It implies that only those families T = (71, T3, ..., T),)
of two-rowed arrays, T; being of the form (13) and satistying (14), contribute to (12)
where 7; and 7;,, have no crossing point for all i.

So, let T be such a family of two-rowed arrays without any crossing point. By
using the arguments from [23]' (with Agi), Agi), Ey), Eéi) in [23] replaced by our
[1@, flgi) -1, Efi) +1, E~§i), respectively, i = 1,2,...,n), it then follows that the
permutation ¢ associated to T must be the identity permutation. Thus, the two-
rowed array 7; has the form (recall (13))

A0 < 0 O < gl (16)
2 = 1 ki = L2

and satisfies (14). Moreover, we assumed that there is no crossing point, meaning
that there are no consecutive two-rowed arrays 7; and 7;,, and indices [ and .J such
that (15) holds.

By interpreting the two-rowed array (16) as a lattice path P; from A — (0,1)
to B0 + (1,0) whose NE-turns are exactly (agi), bgi)), e (ag), b,(fi)), i=1,2,...,n,
the family T of two-rowed arrays is translated into a family P = (P, Py,...,P,) of
paths. Clearly, under this translation we have |T|/2 = NE(f’), and, hence,

ATI/2 — NE®) (17)

The fact that (15) does not hold simply means that the paths P, and 15i+1 do not
cross each other (that is, they may touch each other, but they never change sides),
i=1,2,...,n— 1. We refer the reader to the explanations in Section 2 (between
Theorems 3 and 4) in [14]. Here, we content ourselves with an illustration. Suppose
two paths @ and @5 cross each other (see Figure 4). Furthermore suppose that
the NE-turns of @ are (ay,by), (az,b2), ..., (ax,bg), and the NE-turns of ), are

!The proof in the original paper [14, last paragraph of the proof of Theorem 4] contained an
error at this point. The inequality Aga(H_l)) —1 < A®®) on page 12 of [14] is not true in general.
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(c1,dy), (c2,d3), ..., (¢, d;). Then it is obvious from Figure 4 that there exist I and
J such that (15¢)—(15e) hold.

Q1

iy | @

e
(Clla 51—1)

Figure 4.

To finally match with the claim of Theorem 3.1, we shift P; by (i — 1, —i + 1),
i=1,2,...,n. Thus we obtain a family (P, P, ..., P,) of lattice paths, P; running
from A® to E®. Clearly, under this shift, the condition that P; and P, do not
cross each other translates into the condition that P; and F;;; do not touch each
other, 1 =1,2,...,n— 1. If we combine this fact with the observation that the first
path, P, = P, stays inside the ladder region L because of (14) with ¢ =1, then we
conclude that all the P;’s must also stay inside L because P; forms a barrier.

Thus, in view of (17), we have proved that the right-hand side of (10) is equal
to the generating function Y p 2NE(®) where the sum is over all families P =
(P, Py, ..., P,) of nonintersecting lattice paths, P; running from A® to E® and
staying inside the ladder region L. But this is exactly the left-hand side of (10).
Thus Theorem 3.1 would be proved.

4.4 The involution

To show that the contribution to the sum (12) of the families T = (13,75, ...,
T,,) of two-rowed arrays, T; being of the form (13) and satisfying (14) for i =
1,2,...,n, which contain consecutive arrays 7; and 7;,; that have a crossing point
(cf. (15)), indeed equals 0, we construct an involution, ¢ say, on this set of families
that maps a family (11, Ts,...,T,) with associated permutation o to a family T =
(T1,Ts,...,T,) with associated permutation &, such that

sgno = —sgna, (18)

and such that B
IT| = |T]. (19)

Clearly, this implies that the contribution to (12) of families that are mapped to
each other cancels.

The definition of the involution ¢ can be copied from [14, Sec. 3, proof of Theo-
rem 4]. For convenience, we repeat it here. Let (T, o) be a pair under consideration
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for the sum (12). Besides, we assume that T has a crossing point. Consider all
crossing points of two-rowed arrays with consecutive indices (see (15)). Among
these points choose those with maximal x-coordinate, and among all those choose
the crossing point with maximal y-coordinate. Denote this crossing point by S. Let
¢ be minimal such that S is a crossing point of T; and T; ;. Let T; and T;,, be given
by (15a) and (15b), respectively. By (15), S being a crossing point of T; and T;,4
means that there exist [ and .J such that T} looks like

AC) < ey ap ... ap, < ED
jlo(i) () (20)
A2 < bi_1 by ... bkz < 2
T;+1 looks like
AgO'(’H-l)) S ......... Cjy CJ+1 ... C/CH_l S Nfi) (21)
Jlot+) < dr o d ., < EY
9 S ... J—1 ) kiy1 > Loy
S = (alvdJ)v
cy < ar (22&)
by 1 <dy (22b)
and
1<I<k+1, 0<J< ki (22¢)

Because of the construction of S, the indices I and .J are maximal with respect to
(22).

We map (T, 0) to the pair (T, 00 (i,i+1)) ((4,7+ 1) denotes the transposition
exchanging ¢ and i+ 1), where T = (T, T,...,T,), with T; = T} for all j #4,i+1,
with T'; being given by

Cjy arp ... Qg

dyy br ... by (232)

and with T, being given by

........ ar-1 Cj41 -+ Cgiyy (23b)

4.5 The properties of the involution

What we have to prove is that this operation is well-defined, i.e., that all the rows
in (23a) and (23b) are strictly increasing, that T; is of type (oo (i,i +1))(i) — i =
o(i+1)—i, that ;11 is of type (0o (i,i+1))(i+1) —i—1=o(i) —i—1, that the
bounds for the entries of T; are given by

ot

Aéo(i-i—l))

Cj ar ... Q
dy_y by ... by

IAINA
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that those for T, are given by

and that (14) is satisfied for T; and T,»H. Furthermore we have to prove that ¢ is
indeed an involution (for which it suffices to show that (22) also holds for T; and
Ti11), and finally we must prove (18) (with @ = o o (i,i + 1)) and (19).

The claim that (18) and (19) hold is trivial. All other claims, except for the
claim about (14), can be proved by copying the according arguments from the proof
of Theorem 4 in [14] (see the paragraphs after [14, Eq. (27)]).

4.6 The involution respects the ladder condition

It remains to show that (14) is satisfied for T; and T; ;. Unfortunately, it is necessary
to supplement and refine the according arguments in the proof of the main theorem
in [17] (see the proof of (4.27) and (4.28) in [17, pp. 1035-37]) substantially in order
to cope with the situation that we encounter here. Besides, we use the opportunity
to correct an inaccuracy in [17].

We have to prove that for 1 <r <17 — 1 we have

dy—iyr < flar—igr), (24)

provided both a;_14, and d;_;, exist (if either a;_;,, or d;_;y, does not exist there
is nothing to show), and
blfi+r < f(CJ+r)7 (25>

provided both b; ;;, and ¢y, exist (if either by ;4, or ¢y, does not exist there is
nothing to show).
Proof of (24). In the following, let  be fixed. We distinguish between two cases.

If Efl) < ay, then we have the following chain of inequalities:

Ay jpr <dj 1 +1—i+r<br—i+4+r<bri4p—i+1
<EY —i+1=EY <EY < f(BM) < flar) < flar14r), (26)

as required. (The second inequality in (26) follows from the fact that the rows in
(23a) are strictly increasing.)

Otherwise, if Efl) > ay, let us assume for the purpose of contradiction that (24)
does not hold. Then, because of the first two inequalities in (26) we have d; ;1 < by,
and hence

flar) < flar—igr) < dj_igy < by (27)

In more colloquial terms, the point (as, by) lies outside the ladder region L defined
by (2).
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For the following, we make the conventional definitions a(;j()f(j)ﬂ =

[15"(3')) -1, a,(c‘?Jrl = E(j) +1 (Which is in accordance with the conventional defi-

nition for agiy in (15)), and b A — 1 (which is in accordance with the
conventional definition for by in (15)).

For any j < ¢ we claim that, if for the two-rowed array 7)., (given by (13) with
i replaced by j 4+ 1) we find a pair (agﬂ), bgﬂ)) of entries (i.e., agil) and bgﬂ)
exist in T4y or are defined by means of one of the above conventional definitions)
such that?

ar > agﬁf) and by < bUTD (28)

8+17

then we can find an h < j such that the two-rowed array 7}, contains a pair (agz), bg,i))
satisfying the same condition, that is

ar > agz) and b < bgfz). (29)

In other words, we claim that if in 74, we find a pair of entries which, when
considered as a lattice point, is located (weakly) northwest of (a;,b;), then we will
also find such a pair in 7}, for some h < j.

Let us for the moment assume that we have already established the claim.
Clearly, for j =i — 1 the condition (28) is satisfied with s;;; = I, in which case we
have agﬂ) = agi) = ay; and bgﬂ) = b( )= = b;. Then, by iterating the assertion of our
claim, we will find that (29) is sat1sﬁed for h =1 and some s;. Using this and (27)
we obtain

flall) < flar) < by < B
However, this inequality contradicts the fact that 77 obeys the ladder condition (14)
with i = 1 and s = s;. Hence, inequality (24) must be actually true.

For the proof of the claim, we distinguish between four cases:

(i) o(j) > j and o) < ay;

(11) U(]) j and a )( ) +j41 S ar;
(iii) o(j) > j and a1 > ar;
(iv) 0(j) < j and aY ])HH > ay.

4.6.1 Case o(j) > j and al ) < ay.

Because we are assuming E£ UBS ar, we have a; < Efl) —1= Efl) < E~§j). Therefore
it is impossible that ag') = E( )41 (by one of our conventional assignments), and
hence ag 7 does indeed exist, i.e., kj > 1 (cf. (13) with ¢ replaced by j).

Let s; be maximal such that agj) < ay. By the above we have 1 < s; < £;.

Therefore bgj) exists. If bgj) < by, then we have a§]+1) <a; < ag )+1 and b&) <b <

2Tt is at the corresponding place where the inaccuracy in [17] occurs. On p. 1036 the inequality
chain a;y > xs > --- > u; has to be replaced by a; > xg, ..., a; > u, and the inequality chain
by <ys <--- < has to be replaced by by < ys, ..., by <vg.
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b§§j}> But that means that (a ng,bgﬁP) is a crossing point of 7; and Tji; (cf.
(15¢)—(15e)) with larger - coordinate than (ar,dy), Contradlctlng the maximality of
the crossing point (ay,d;). Hence, we actually have bs > by, and thus (29) holds

with h = j and with s; as above.

4.6.2 Case o(j) < j and a” < ay.

( j)+i+1

The arguments from the above case apply verbatim if one replaces a by a
everywhere.

( )+j+1

4.6.3 Case o(j) > j and a) > ay.

We show that this case actually cannot occur. Because of (7), we have f(Agl)) <
f(ar), and therefore
B = APO) 1 < AW _ 1 = 4D < F(AD) < f(ar) < by < BUHD

_5+17

the two last inequalities being due to (27) and (28). On the other hand, we have

agﬂ) <a; < a( 7). This means that (agj), bgﬂ)) is a crossing point of 7; and T},

with larger x-coordinate than (a;,d;), which contradicts again the maximality of
(ar,dy).

4.6.4 Case 0(j) <j and a(_j()f( P >
If b(j) . < by, then we have a¥ +1) <ar < a( )(j)+j+1 and b(jz)r j<br< bsﬂll :
This means that (a U )( it bgil)) is a crossing point of T} and T]+1 with larger

x-coordinate than (ay, dy), a contradiction. Therefore we actually have b(_j()f(j)ﬂ. > by.
If a(;j()f(j)ﬂ = Aﬁ”(”) —1 < ay then (29) is satisfied with h = j and s; = —o(j) +.

If, on the other hand, a(_]()f(j)ﬂ. > ay, then of course (29) cannot be satisfied for h = j
and any legal s;. However, we can show that it is satisfied for some smaller h.
Let us pause for a moment and summarize the conditions that we are encoun-
tering in the current case:
(')

Clearly, there is a maximal s with s < o(j) < o(s). We are going to show that
we can either find an A < j and a legal s, such that (29) is satisfied, or we find
an index ¢ < j such that (30) is satisfied with j replaced by ¢ (in which case we
repeat the subsequent arguments), or we can construct a sequence of pairs (a%), b,(ni)),
re€{1,2,....k} for t € {s+1,s+2,...,7 — 1} that satisfy

2 o) > o and o) 2 ) 2 0 .
where, in order that (31) makes sense for { = j — 1, we set r; = —o(j) + J.
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However, if we have found such pairs for ¢ € {s +1,s+2,...,j — 1}, then we
have

a; < a(s-i—l) < a(j) 1= Agg(j))

Ts+1 —o(j)+j

< AP 4 o) — s < AP 4 g(s) — s < gl

and

This means that (ag ),b,(nill)) is a crossing point of Ty and T, with larger z-
coordinate than (ay,dy), contradicting again the maximality of (a;,d;). Therefore
we will actually find an h < j such that (29) is satisfied.

We prove our claim in (31) by a reverse induction on ¢. (The last two inequalities
in (30) guarantee that the induction can be started.) Suppose that we have already
found indices rj_q,7;_9,..., ¢4 satisfying (31). Then we distinguish between the
two cases o(¢) > ( and o(() < (.

First let us consider the case o(¢) > (. If a1 > a,(nﬁll), then we have a; < a%ﬂ) <

agz) and, if in addition ¢ > o(j), we have

B = AT 1< APUD 1 <)) < e,

where the first inequality is due to o(¢) > ¢ > o(j). This means that (ag ), b%ﬂ))
is a crossing point of T, and T,;; with larger xz-coordinate than (a;,d;), again a
contradiction.

If ¢ < o(j), we can also prove that bg < erl , giving the same contradiction.
However, this time we must argue differently. Since ¢ > s, all of (¢ + 1),0(¢ +
2),...,0(0(j)) must be less than o(j). For that reason, because of o(¢) > ¢ and the
pigeon hole principle, there must be at € {¢( +1,0+2,...,0(j)} with o(t) < o(?).
Then, by (31), we obtain

Hence, we actually have ag) < a%ﬂ ),

We also have E ) > A )+ o(s) —s — 1, because otherwise there would not
be any two-rowed array T (see (13) with i = s), i.e., the family T of two-rowed
arrays that we are considering would not exist, which is absurd. This implies the
inequality chain

o(s)
Z Agﬂ(])) + O—(j) — 8§ — ]_ Z Ago-(j)) - 1 - a(_Jg.(])+J Z a%i—ll)

Therefore it is impossible that age) = E}") + 1 (by one of our conventional assign-

ments), and hence age) does indeed exist, i.e., k, > 1.
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Now let 7, be maximal, such that a,(f;) < allty. By the above we have 1 < r, < k.

Te41
It b%) < b%ﬂ), then we have a; < a%ﬂ) < a(f)ﬂ and b%) < b%ﬂ) This means that

,
(a%)ﬂ, b%ﬂ)) is a crossing point of 7j and Ty, with larger xz-coordinate than (ar, dy),
which is once more a contradiction.

Hence, we actually have b%) > b, Therefore, if a,(q? < ay then (29) is satisfied

Ti+1
with 7 = ¢ and s, = ry, and otherwise, if a\” > a; then (31) is satisfied.
As a last subcase, we must consider o(¢) < ¢. Again we have to distinguish

between two cases: if a(ﬂ(z)MH < a%ﬂ), we argue exactly as in the above case
where o(¢) > (¢ and ag‘q) < a%ﬂ). (We just have to replace ag‘q) by CL(_Z()T(K)JFKJrl there.)
Otherwise, if a(f()f(z)MH > a,(nﬁll), we get b(—ZZr(E)M > b,(nﬁll), because otherwise a; <
0+1 ¢ ¢ 0+1 ¢ 0+1) - .
a$[+1) < a(_()T(Z)MJrl and b(_()f(()H < b£l+1), and thus (a(—()r(Z)+e+1vb$Z+1)) is a crossing

point with larger z-coordinate than (as,d;), again a contradiction.
Now, if a(ﬁ;(z)w < ay then (29) is satisfied with h = ¢ and s, = —o () + (. On
the other hand, if a(_ﬁt)f(()M > a; then (30) is satisfied with j replaced by ¢. In addition

we have ¢ < j. Consequently, we repeat the arguments subsequent to (30) with j
replaced by (. In that manner, we may possibly perform several such iterations.
However, these iterations must come to an end because o(1) > 1, and, hence, the
conditions (30) cannot be satisfied for j = 1.

Proof of (25). We proceed similarly. We first observe that we must have a; <
cjy1, because otherwise we would have ¢; 1 < a; and by (15d) also b;_1 < dj < dj41,
which means that (a;,d;;1) is a crossing point of T; and T;,4, contradicting the
maximality of (ar,d;). Now we distinguish again between the same two cases as in

the proof of (24). If EF) < ay, then we have the following chain of inequalities:
br—ipr b+ 1—i+r<dj—i+r<dj,—1
<EB—i= BT < B < S(BY) < flar) < flera) £ fles), (32)

as required. (The second inequality in (32) follows from the fact that the rows in

(23b) are strictly increasing.) If on the other hand we have Efl) > ay, then let us

assume for the purpose of contradiction that (25) does not hold. This implies

flar) < flesqr) < br_ipr <y

Again, this simply means that the point (ar,br) lies outside the ladder region L
defined by (2). We are thus in the same situation as in the above proof of (24),
which, in the long run, led to a contradiction.

This completes the proof of the theorem.

5 Enumeration of two-rowed arrays

The entries in the determinant in (10) and (11) are all generating functions S~ 2/71/2
for two-rowed arrays 7. Hence, we have to say how these can be computed. Of
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course, a “nice” formula cannot be expected in general. There are only two cases in
which “nice” formulas exist, the case of the trivial ladder (i.e., f(x) = b+1; see (37)),
and the case of a ladder determined by a diagonal boundary (i.e., f(z) = v+ D +1,
for some positive integer D; see (39)). In all other cases one has to be satisfied with
answers of recursive nature.

We will describe two approaches to attack this problem. The first leads to an
extension of a formula due to Kulkarni [20] (see also [17, Prop. 4]) for the generating
function of lattice paths with given starting and end points in a one-sided ladder
region. The second extends the alternative to Kulkarni’s formula that was proposed
in [17, Prop. 5-7]. The first approach has the advantage of producing a formula
(see Proposition 5.1 below) that can be compactly stated. The second approach is
always at least as efficient as the first, but is by far superior for ladder regions of a
particular kind. This is discussed in more detail after the proof of Proposition 5.4.

Proposition 5.1. Let f be a weakly increasing function f : [0,a] — [1,b + 1]
corresponding to a ladder region L by means of (2), as before. Eatend f to all
integers by setting f(x) = oy for x < 0 and f(x) := ey + 1 for @ > a. Let
a; — 1 < sp1 < -+ < 51 < g1 be a partition of the (integer) interval [ay — 1,&4]
such that f is constant on each subinterval [s; + 1,s; 1|, i = k,k —1,...,1, with
sp =y — 1 and sy := ,. Then the generating function Y 21712 for all two-rowed
arrays T of the form (6) and satisfying (5) is given by

GF(TA(; (ar, as), (21, 82); f, d); 21172)

2 AR )

— e
etd>f>0 =1 - ¢ il
erp—[r=1

where € = (e, ea,...,ex) and £ = (f1, fa, ..., fx), where, by definition, ey = fy =0,
where e +d > f >0 means e; +d > f; >0, i =1,2,..., k, and where f'(x) agrees
with f(x) for ay < x < eq, but where f'(a; — 1) = as and f'(e1) = eo+ 1. (All other
values of f" are not needed for the formula (33)).

Proof. Let T be a two-rowed array in TA(l; (aq, as), (£1,£2); f, d), represented as in
(6). Suppose that there are e; entries in the first row of 7" that are larger than s;,
and that there are f; entries in the second row of T that are larger than or equal to
f(si),i=1,2,..., k. Equivalently, we have

E1 =S80 2Q1 > "+ > (g > 81 2 Qej41 > =+ * > ey > 52
> > Sk 2 ey 1 > > ey, > Sp =01 — 1, (34)

and

f’(80>:€2+1>bl >"'>bf1 Zf(Sl) >bf1+1 > "'>bf2 Zf(82>
> e > f(S]C_1> > bfk—1+1 > e > bfk > fl(Sk) = Qp. (35)
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In particular, we have e, — f;, = [. From (5) it is immediate that we must have
e; +d > f; > 0. Conversely, given integer vectors e and f with e; +d > f; > 0 and
ex — fr =1, by (34) and (35) there are

()

possible choices for the entries a; and b;, 1 = 1,2, ..., in the first and second row of
a two-rowed array which satisfies (34) and (35), and thus (5). This establishes (33).
O O

Remark. 1If in Proposition 5.1 we set [ = d = 0, then we recover Kulkarni’'s for-
mula [20, Theorem 4] (see also [17, Prop. 4]), because the two-rowed arrays in
TA(0; (aq, a2), (£1,£2); f,0) can be interpreted as lattice paths with starting point
(g, a5 — 1) and end point (7 + 1,22) which stay in the ladder region defined by f.

Now we describe the announced alternative method to compute the generating
function > 21712 for two-rowed arrays T of the form (6) which satisfy (5). For sake
of convenience, for A = (o, ) and E = (g1,¢5) as before, a; < e, we introduce
the set

TA (I; A, E; f,d) = TA(; A, E; f,d) \ TA(l; A+ (1,0), E; f,d), (36)

which is simply the set of those two-rowed arrays of the given form whose first entry
in the first row equals a;.

This second method is based on the simple facts that are summarized in Propo-
sitions 5.2-5.4. The propositions extend in turn Propositions 5-7 in [17]. In the
following, all binomial coefficients (Z) are understood to be equal to zero if n is
negative and k is positive.

Proposition 5.2. Let L be the trivial ladder determined by the function f(z) = b+1
by means of (2). Let A = (a1, a0) and E = (g1,¢2) be lattice points and | and d
arbitrary integers. Then we have

GF (TA(; A, B f,d); 21V/?) = Z (61 _kofle 1> (62 - Zz + 1> 2, (37)
k

and if oy < g1 we have

Gr (T A B ) =0 (2 ) (BT e
k

Proposition 5.3. Let L be a “diagonal” ladder determined by the function f(x) =
x4+ D+ 1 for an integer D by means of (2). Let d be a nonnegative integer and
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an integer such that | +d > 0. Let A = (a1, ) and E = (g1,£2) be lattice points
such that a1 + D +1+1+d>as and ey +D +1+d > e9. Then we have

GF (TA(; A, B f,d); 21V/?) = Z ((61 —kil;r 1> (62 - Zg + 1>

ke
eir—ay+D+1\[(ea—ay —D+1 k12
— 39
( k—d—1 ><kw%+d+1>>z  (39)

and if an < g1 we have
GF (TA*(I; A, E; f,d); M%) = g1\ (g2 —axt1
7 Y Y ? ) - k_'_l_l k
eir—ar+D+1\[(eg—a; —D k412
( k—d—1 >< k+1+d >>z . (40)

Proof of Propositions 5.2 and 5.3. Identities (37) and (38) are immediate from the
definitions.
To prove identity (41), we note that the number of two-rowed arrays

Qp
(&)

a_jy1 Qg2 ... Qo ar ... Qag Sa’;‘l

bl bk Sa’:‘g (41&)

ININ

that obey
bi < aiqg+D+1, 1=1,2,... k, (41b)

is the number of all two-rowed arrays of the form (41a) minus those that violate the
condition (41b). Clearly, the generating function for the former two-rowed arrays
is given by the first term in the sum on the right hand side of (39). We claim
that the two-rowed arrays of the form (41a) that violate (41b) are in one-to-one
correspondence with two-rowed arrays of the form

a; — D < 1 oov Ch—d—1 <€

42
a1 +D < dygg 1 dyog ... do di ... dr_q1 <o (42)

(In particular, if £ < d then there is no two-rowed array of the form (42), in agree-
ment with the fact that there cannot be any two-rowed array of the form (41a)
violating (41b) in that case.) The generating function for the two-rowed arrays in

(42) is
Z er—ax+D+1\[(ea—ay —D+1 /2
. k—d—1 E+l+d+1 ’

which is exactly the negative of the second term on the right-hand side of (39). This
would prove (39). So it remains to construct the one-to-one correspondence.
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The correspondence that we are going to describe is gleaned from [18], see also
[15, Sec. 13.4] and [16]. Take a two-rowed array of the form (41a) that violates
condition (41b), i.e., there is an index ¢ such that b; > a;y4 + D + 1. Let I be the
largest integer with this property. Then map this two-rowed array to

OéQ—DS (bl—D> ............. (bjfl—D) ar4q+1  --- Qag Sa’fl
o +D < (CL_H_1+D) ....... (a1+d+D) by b, <eés.

Note that both rows are strictly increasing because of b;_1 —D <b;;1 —D—2 <
aryqar1- If I =1, we have to check in addition that as — D < agy9, which is indeed
the case, because

ad+2Zad+1+1Z---Za_l+1+1+l+d2a1+l+l+d2aQ—D.

Similarly, it can be checked that b,y — D < ey if [ = k — d. 1t is easy to see that
the array is of the form (42).

The inverse of this map is defined in the same way. Take a two-rowed array of
the form (42). Let .J be the largest integer such that d; > c;.4+ D + 1, if existent.

If there is no such integer, then let J = —d. We map this two-rowed array to
(0%} S (d—l—2d—1 —D) .................. (dJ_l —D) Cj+d+1 -+ Ck—d—1 S &1
(6% S (61+D) Ce (CJ+d+D) dJ ...................... dk—d—l S £9

Since we required [ + d > 0 the entry d;_; — D exists even if J = —d. This
implies that the two-rowed array we obtained violates condition (41b), since d; >
dj1+1=(djy_1 — D)+ D+ 1. As above, it can be checked that both rows are

strictly increasing, even in the case J = —d, and that the array is of the correct
form.

Equation (40) is an immediate consequence of (39) and the definition (36) of
TA*(l; A, E; f,d). O

Proposition 5.4. Let L be an arbitrary ladder given by a function f by means of
(2), let A = (a1, 2), E = (1,e2) be lattice points in L, and let d be a nonnegative
integer and | an integer such that | +d > 0. Then for all x € [0,a] such that
ay < f(x) < ey + 1 we have

GF (TA(Z;A,E; f,d); ZH/2>

= 0GR (TAQ+ A, G~ 1, f(2) — 1 £,0):2H72)

j=z+1
-GF (TA*(=d; (5, f(2)), B: f. d); 2117?)
d
+3 GF (TA(l+d — e; A, (e1, f(2) — 1); f,e); 2H/?)
e=0
.<€2 —df£x2 + 1> d—e)/2 (43)
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Proof. We show this recurrence relation by decomposing an array

a1§ a_jy1 A yy2 ... G131 Qo A ... Qf Sa’fl
Oég< bl bk Sa’:‘g

(44)

in TA(l; A, E; f,d) — the generating function of which is the left-hand side of (43)
— into two parts. Let I be the smallest integer with b, > f(x), or, if all b, are
smaller than f(x), let I = k + 1. Now we have to distinguish between two cases.

If I +d<k+1, we decompose such an array into the array

a1 < gy Qgy2 o.. Gy Gy Ay ... Qgyr .- A714d S Appg— 1
(0% S b1 PN blfl S f(l’) -1

in TA(l + d; A, (a1+d -1, f(z) — 1); f,0), and the array

aryaq < ryg --- Qp < €1
f(l’)g b[ b[+d bk Sa’fg

in TA*(—d,; (a1+d, f(x)), E; f,d). Clearly, this is a pair of two-rowed arrays enumer-
ated by the first sum in the right hand side of (43), with the summation index j
equal to ayiq.

If I +d>Fk+1, we decompose (44) into the array

a1§ a—j4+1 A—y42 ... QG-1 Ay a1 ... Q—j4+2 ... Qf, §€1
OJQS b1 bjfl Sf(l’)—l

in TA(l =T+ k+1; A, (e1, f(z) = 1); f,d+ I — k — 1), and a single row
f(x)§ b[ bk <€2.

Note that, if I = k+1, this row is empty. These pairs are enumerated by the second
sum on the right hand side of (43), with the summation index e equal to d+1—Fk—1.
O O

Now, here is the second method for determining GF(TA((;(aq,as),
(21,22); f,d)); 21172) for any given ladder L of the form (2), with points A = (o, ay)
and E = (£1,¢2) located inside L: partition the border of L, i.e., the set of points
{(x, f(z)) : x € [0, a]} into horizontal and diagonal pieces, say L', L? ..., L™, where
L' ={(z,f(x)) : ;1 < @ < a;}, for some —1 =29 < 1) < 03 < -+ < T,y = a,
each L' being either horizontal or diagonal. Then apply the recurrence (43) in suc-
cession with @ = x,_1, T;p—2,..., 21 and use (37)—(40) to compute all the occurring
generating functions.
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To give an example, in the case of the ladder of Figure 2 we would choose m = 3,
r1 =3, x5 =7, x3 = 13, and the resulting formula reads

: PR - ka2 E1—J | (c2—12

j=8 k>0

j-1 ,
. 2: 2: Zh+@+umv2( [ €3] ><7—cm>
i=4 ky,k2>0 ki +1+d k1
j—i=1\(6Y\ [(T—i\(j—2
ko —1 ko ko ko — 1
) — 7 — (0]
+ k1+(l+d)/2< J— > < >
klZ>0 : kl + l + d kl
d
(a-eyj2 (52 = 12
()
€1 .
. Z Z Skibke+(kd—e)/2 (P T N 7T—ay
kl + [ + d kl

1=4 k1,k2>0
51_i 6 . 7T—1 61—1
kg—e—l kQ kz kg—e—l

- e)/2— €1 — +1 7 — 6
PSP [ (e [

F=0 k>0

If L consists of not too many pieces, both methods are feasible methods, see our
Example in Section 3. Both methods yield (2m — 1)-fold sums if the partition of the
border consists of horizontal pieces throughout. However, the second method is by
far superior in case of long diagonal portions in the border of L, since then Kulka-
rni’s formula involves a lot more summations. For example, when we implemented
formula (45) (in Mathematica) it was by a factor of 40.000 (!) faster than the corre-
sponding implementation of formula (33). (Indeed, the “simplicity” of the formula
(33) in comparison to (45) is deceptive, as (33) involves an 11-fold summation in
that case, whereas (45) has only 3-fold, 4-fold, and 5-fold sums.) Of course, in the
worst case, when L consists of 1-point pieces throughout, both methods are nothing
else than plain counting, and therefore useless. For computation in case of such
“fractal” boundaries it is more promising to avoid Theorem 3.1 and instead try to
extend the dummy path method in [19] such that it also applies to the enumeration
of nonintersecting lattice paths with respect to turns.
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Chapter 4
The h-vector of a ladder determinantal
ring cogenerated by 2 x 2 minors is
log-concave®

Abstract

We show that the h-vector of a ladder determinantal ring cogenerated by
M = [uy | v1] is log-concave. Thus we prove an instance of a conjecture of
Stanley, resp. Conca and Herzog.

1 Introduction

Definition 1.1. A sequence of real numbers a, as, . . ., a, is logarithmically concave,
for short log-concave, if a; ya;.y < a? fori € {2,3,...,n— 1}.

Numerous sequences arising in combinatorics and algebra have, or seem to have
this property. In the paper [13] written in 1989, Richard Stanley collected various
results on this topic. (For an update see [3].) There he also stated the following
conjecture:

Conjecture 1.2. Let R=Ry® Ry & ... be a graded (Noetherian) Cohen-Macaulay
(or perhaps Gorenstein) domain over a field K = Ry, which is generated by Ry and
has Krull dimension d. Let H(R,m) = dimg R,, be the Hilbert function of R and
write

Z H(R,m)a™ = (1— x)’thixi.

m>0

Then the sequence hg, hq, ..., hs s log-concave.

The sequence hg, hy,...,hs is called the h-vector of the ring. Orginally the
question was to decide whether a given sequence can arise as the h-vector of some
ring. In this sense the validity of the conjecture would imply that log-concavity was
a necessary condition on the h-vector.

It is now known however [12, 3] that Stanley’s conjecture is not true in general.
Several natural weakenings have been considered, but are still open. For example,
Aldo Conca and Jiirgen Herzog conjectured that the h-vector would be log-concave
for the special case where R is a ladder determinantal ring. (Note that ladder

*In honour of Miriam Rubey, at the occasion of her second birthday
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determinantal rings are Cohen-Macaulay, as was shown in [8, Corollary 4.10], but
not necessarily Gorenstein.) We will prove the conjecture of Conca and Herzog in
the simplest case, i.e., where R is a ladder determinantal ring cogenerated by 2 x 2
minors, see Corollary 4.6.

In the case of ladder determinantal rings the h-vector has a nice combinatorial
interpretation. This follows from work of Abhyankar and Kulkarni [1, 2, 10, 11],
Bruns, Conca, Herzog, and Trung [4, 5, 6, 8]. In the following paragraphs, which
are taken almost verbatim from [9], we will explain these matters.

2 Ladders, ladder determinantal rings and non-
intersecting lattice paths

First we have to introduce the notion of a ladder:

Definition 2.1. Let X = (z;j)o<i<b0<j<s b€ a (b+1) X (¢ + 1) matrix of indeter-
minates. Let Y = (y; j)o<i<bo<j<a De another matrix of the same dimensions, with
the property that y; ; € {0,2;;}, and if y; ; = x; ; and y;s j» = @y ;7, where ¢ < 4" and
Jj < j'then y, s = x,, for all r and s with i <r <7 and 7 < s < j'. Such a matrix
Y is called a ladder.

A ladder region L is a subset of Z? with the property that if (¢, 7) and (7, j') € L,
i <i'and j > j' then (r,s) € Lforallr € {i,i+1,...,i'}and s e {j/,j'+1,...,7}
Clearly, a ladder region can be described by two weakly increasing functions L and
L, such that L is exactly the set of points {(i,7) : L(i) < j < L(i)}.

We associate with Y a ladder region L C Z? via (j,b — i) € L if and only if
Yij = Lij-

In Figure l.a an example of a ladder with @ = 8 and b = 9 is shown, the
corresponding ladder region is shown in Figure 1.b.
Now we can define the ring we are dealing with:

Definition 2.2. Given a (b+1) x (a+1) matrix Y which is a ladder, fix a “bivector”
M = [uy, ug,y ... up, | v1,02,...,0,] of integers with 1 < wuy <uy <-+-<wu, <b+1
and 1 < v < vy, < --- <wv, <a+ 1. By convention we set u,.; = b+ 2 and
Up+1 = @ + 2.

Let K[Y] denote the ring of all polynomials over some field K in the y; ;’s, where
0 <i<band 0 < j < a Furthermore, let I)/(Y) be the ideal in K[Y] that is
generated by those t x ¢t minors of Y that contain only nonzero entries, whose rows
form a subset of the last u; — 1 rows or whose columns form a subset of the last
vy — 1 columns, ¢t € {1,2,...,n+ 1}. Thus, for t = n + 1 the rows and columns of
minors are unrestricted.

The ideal I),(Y) is called a ladder determinantal ideal generated by the minors
defined by M. We call Ry (Y) = K[Y]/Iy(Y) the ladder determinantal ring cogen-
erated by the minors defined by M, or, in abuse of language, the ladder determinantal
ring cogenerated by M.
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Note that we could restrict ourselves to the case u; = v; = 1, because all the
elements of Y that are in one of the last u; — 1 rows or in one of the last v; — 1
columns are in the ideal.

Next, we introduce the combinatorial objects that will accompany us throughout
the rest of this paper:

Definition 2.3. A two-rowed array of length k is a pair of strictly increasing se-
quences of integers, both of length k. A two-rowed array T' = (1, 4. " 3¥ ) is bounded
by A= (A17A2> and F = (El,Eg), if

A
and AQ +1

<y <ap<---<a, < E;—1

< by <by <<, < Es.

Given any subset L of Z?, we say that the two-rowed array T is in L, if (a;,b;) € L
for i € {1,2,...,k}. By TL(A — E) we will denote the set of two-rowed arrays
of length %k, bounded by A and E which are in L. The total length of a family of
two-rowed arrays is just the sum of the lengths of its members.

ay a2 ... ag Tr1 T

Let Tt = (b 4 5 ) and Th = (3327 4) be two-rowed arrays bounded by
A = (AP AWy and EO = (EM EM) and A® = (AP AP) and E® =
(EP,E%Z)) respectively. Set aj,; = EF) and by = Agl). We say that T} and T5
intersect if there are indices I and .J such that

Z‘Jga[ (X)

bro1 <yy

where 1 < T <k+4+1land 1 < J <[. A family of two-rowed arrays is non-intersecting
if no two arrays in it intersect.

Note that a two-rowed array in 7,/(A — E) can be visualized by a lattice
path with east and north steps, that starts in A and terminates in £ and has
exactly & north-east turns which are all in L: Each pair (a;, b;) of a two-rowed array
([gi Z; B [,f:) then corresponds to a north-east turn of the lattice path. It is easy to
see that Condition (x) holds if and only if the lattice paths corresponding to 77 and
T5 intersect.

For an example see Figure 1.c, where the three two-rowed arrays

2 3 3 5 2 4 6
0 (2 _ (3 _
r _(6 7>’T _(4 6> and 7 _(134>

bounded by A® = (0,3), A® = (0,2), A® = (0,0) and EM = (5,9), E®?) = (7,9),
E®) = (8,9) are shown as lattice paths. The points of the ladder-region L are drawn
as small dots, the circles indicate the start- and endpoints and the big dots indicate
the north-east turns.
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a. a ladder with b. the correspond- c. a triple of non-
a=8and b=9 ing ladder region intersecting lattice
paths in this ladder

Figure 1.

3 A combinatorial interpretation of the h-vector
of a ladder determinantal ring

We are now ready to state the theorem which reveals the combinatorial nature of
the h-vector of Ry (Y) = K[Y]/In(Y), the ladder determinantal ring cogenerated
by M.

Theorem 3.1. Let Y = (y;;)o<i<b, 0<j<a Ve a ladder and let M = [uy, ug, ..., uy |
U1, Vg, ..., Us] be a bivector of integers with 1 < up < ug < -+ < u, < a+1 and
1<y <wvy<--<v, <b+1 Forie{l,2,...,n} let

AD = (0,141 4 — 1)
FEO = (@ —vp1-5+1,0).

Let L™ = L be the ladder region associated with Y and fori € {1,2,...,n — 1} let
LY = {(x,y) € LY . 2 < Efi),y > Agi) and (z + 1,y — 1) € LUV,
Finally, for i € {1,2,...,n} let
BY ={(z,y) e LY : (x +1,y—1) ¢ LD}
and let d be the cardinality of |JI_, BY.
Then, under the assumption that all of the points AV and EW, i € {1,2,...,n},

lie inside the ladder region L, the Hilbert series of the ladder determinantal ring

Ry(Y) = K[Y]/1y(Y) equals

_ Zezo ‘EL(A = E)‘ 2t

: l
ZdlmK RM(Y)EZ (1—Z)d

>0
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Here, Ry;(Y)e denotes the homogeneous component of degree ( in Ry/(Y) and
‘EL(A > E)‘ 15 the number of non-intersecting families of two-rowed arrays with
total length 0, such that the i™ two-rowed array is bounded by AW and EW and is
in L\ BY foric{1,2,...,n}.

The sets BY, i € {1,2,...,n} can be visualized as being the lower-right bound-
ary of L. Viewed as a path, there are exactly Efi) — Agi) + Eéi) — Agi) + 1 lattice
points on B®, but not all of them are necessarily in L. However, if L is an upper
ladder, that is, (a,0) € L, then this must be the case and we have

d= Z( Y+ EY — Aé“+1)

:Z(a—vn+17i+1+b—un+17i+1+1)
=1

:n(a+b+3)—2(ui+vi),

=1

as in [9].

In Figure 2.a, an example for a ladder region L with ¢ = 8 and b = 9 is given.
The small dots represent elements of L, the circles on the left and on the top of
L represent the points A® and E®, i € {1,2,3} that are specified by the minor
M =[1,3,4]1,2,4]. The dotted lines indicate the lower boundary of L(). Note
that the point (4,9) is not an element of L. Therefore, in this example we have

n

d:n(a+b+3)—2(ui+vi)—1:44.

=1

Proof. We will use results of Jiirgen Herzog and Ngo Viet Trung. In Section 4 of
8], ladder determinantal rings are introduced and investigated.

We equip the indeterminates x; j, ¢ € {0,1,...,b} and j € {0,1,...,a} with the
following partial order:

vij < ayg if i > i and j < 5.

A t-antichain in this partial order is a family of elements x, ., %y, 55, -, Tp, 5, SUCh
that i < ry < --- < rpand s1 < s9 < --- < 5. Thus, a t-antichain corresponds
to a sequence (s1,b—ry), (s2,b—13),...,(s;,b— 1) of t points in the ladder region
associated with Y, where each point lies strictly south-east of the previous ones.
Let D, be the union of the last u; — 1 rows and the last v; — 1 columns of
Y. Let Ap(Y) be the simplicial complex whose k-dimensional faces are subsets
of elements of Y of cardinality £ + 1 which do not contain a t-antichain in D, for

69



9 @ . @@ 9 @ . @@

8 . e o o 8 . ... .

7 o o . . PSP 7 o - . . o .

6 NI 6 c®. -0

5 o o6 & o 5 o0 -

4 eob eoe b 4 oo e R .

3@ o0 sos eos 3@ oo @b o0

2@ 00 . H 2@ s oo

1 e o o o o 1 e o ..0

0 @.... 0 @....
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a. a ladder region with b. a 10 dimensional face
a=8and b=9 of A[1,3’4‘1,2,4} (Y)
Figure 2.

9 9 9
8 8 8
7 7 7
6 6 6
> > >
4 4 4
3 3 3
2 2 2
1 1 1
0 0 0
012345678

Figure 3. Constructing a family of non-intersecting lattice paths, such that the *®
path stays above L"), i € {1,2,3}

DO W~ 1O ~100 O

012345678

Figure 4. The corresponding family of non-intersecting lattice paths, where the *®
path has north-east turns only in L for i € {1,2,3}
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t € {1,2,...,n+1}. Let f; be the number of k-dimensional faces of Ay/(Y) for
k > 0. Then, Corollary 4.3 of [8] states, that

dimg Ry (Y)e =) (52 1) i

k>0

In the following, we will find an expression for the numbers f; involving certain
families of non-intersecting lattice paths.

In Figure 2.b, a 10-dimensional face of Ap 34)1,24(Y) is shown, the elements of
the face are indicated by bold dots. We will describe a modification of Viennot's
‘light and shadow procedure’ (with the sun in the top-left corner) that produces a
family of n non-intersecting lattice paths such that the 7" path runs from A® =
(0, Upy1-) to BED = (a — v,414,b) and has north-east turns only in L"), for i €
{1,2,...,n}.

Imagine a sun in the top-left corner of the ladder region and a wall along the
lower-right border BY) of L1, Then each lattice point (r, s) that is either in B or
corresponds to an element x, , of the face casts a ‘shadow’ {(z,y) : x > r,y < s}.

The first path starts at A1), goes along the north-east border of this shadow and
terminates in £, In the left-most diagram of Figure 3, this is accomplished for
the face shown in Figure 2.b.

In the next step, we remove the wall on B and all the elements of the face which
correspond to lattice points lying on the first path. Then the procedure is iterated.
See Figure 3 for an example. Let P be the resulting family of non-intersecting lattice
paths.

Now, for each i € {1,2,...,n}, we remove all elements of the face except those
which correspond to north-east turns of the i path and do not lie on B®. In the
example, (5,8) is a north-east turn of the second path but lies on B, therefore the
corresponding element x5 of the face is removed. On the other hand, (4,5) lies on
BW _ but is a nort-east turn of the third path, so the corresponding element xy44 of
the face is kept.

This set of north-east turns defines another family of non-intersecting lattice
paths P’ that has the property that the i** path has north-east turns only in L®
forie {1,2,...,n}.

We now want to count the number of faces of Ay (Y) that reduce under ‘light
and shadow’ to a given family of lattice paths P’ with this property. Clearly, P’ can
be translated into a family P of non-intersecting lattice paths such that the i*" path
does not go below B® for i € {1,2,...,n}. Note that the number of lattice points
on such a family P of paths is always equal to d, independently of the given face.
Thus, if m is the number of north-east turns of P’, there are

d—m
kE+1—m

families of non-intersecting lattice paths P that reduce to P'.
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Hence, f;, = (kiITm) |'7,“(A — E)| and we obtain

S dimg B (Y)e2' = 3 (Z (f; 1) fk>zz

>0 >0

S (D)E ) s

>0 k>0 m=0

=S iman el () (50),

m>0 >0 k>0

and if we sum the inner sum by means of the Vandermonde summation (see for
example [7], Section 5.1, (5.27)),

D dimy Ray(Y)es' = | THA = B)| Y2 (d+2__T ) 1)

>0 m>0 >0
_ ZmZO \Tﬁ(A = E)‘ Z™
(1—2z)

O

4 Log-concavity of the h-vector in the case M =
[ur | v1]

In this paper we will settle Stanley’s conjecture when R is a ladder determinantal
ring cogenerated by M, where M is just a pair of integers, i.e., n = 1. We want to
stress, however, that data strongly suggest that Conca and Herzog’s conjecture is
also true for arbitrary n.

By the preceding theorem, in the case we are going to tackle, the sum 7  h;a
that appears in the conjecture is the generating function Y, ., |TF(A — E)| 2" of
two-rowed arrays bounded by A and E which are in the ladder region L.

As the bounds A and E will not be of any significance throughout the rest of
this paper, we will abbreviate T(A — E) to T;X. We will show that the h-vector
is log-concave by constructing an injection from 7., x T2, into T x T,F. This
injection will involve some cut and paste operations that we now define:

Definition 4.1. Let A and X be two strictly increasing sequences of integers, such
that the length of X is the length of A minus two, i.e., A = (ay,as,...,a,y1) and
X = (x1,29,...,05_1) for some k > 1. A cutting point of A and X is an index
[ €{1,2,...,k} such that

ap < xy, (*)

and @1 < a4,
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where we require the inequalities to be satisfied only if all variables are defined.
Hence, 1 is a cutting point if a1 < 21, and k is a cutting point if ;1 < agyq.
The image of A and X obtained by cutting at [ is

ay az ... ap—1 ay ‘l‘l Tyl oo Tg—1

ry T ... X1 ‘al+1 A4 v Apt1
Note that both the resulting sequences have length £.

Lemma 4.2. Let A = (ay,as,...,a541) and X = (x1,22,...,25_1) be strictly in-
creasing sequences of integers, such that the length of X is the length of A minus
two. Then there exists at least one cutting point of A and X.

Proof. 1t ay > x;for 1 € {1,2,...,k — 1} then axy1 > ag_1 > 241 and k is a cutting
point. Otherwise, let [ be minimal such that a; < ;. If [ = 1 then 1 is a cutting
point. Otherwise, because of the minimality of [, we have a;4; > a;_1 > x;_1, thus [
is a cutting point. O

Definition 4.3. Let T' = (T}, T5) € Tiy1 X Te—1 be a pair of two-rowed arrays. Then
a top cutting point of T' is a cutting point of the top rows of T} and 75 and a bottom
cutting point of T is a cutting point of the bottom rows of 77 and T5.

A pair (I,m), where [;m € {1,2,...,k}, such that [ is a top cutting point and
m is a bottom cutting point of T} and 75 is a cutting point of T. Cutting the top
rows of 1" at [ and the bottom rows at m we obtain the image of T'. Note that both
of the two-rowed arrays in the image have length k. More pictorially, if [ < m,

ay ..o, ay Ty oo Tm—1l  oveewnn Tr—1
b1 o b1 ..., b Ym Yk 1
T Ti—1 Q41 [0 (7]
Yy e Ui Ym—1 bm-i—l ....... bk+17

and similarly if [ > m.
For T = (T1,T) € T;5, x T, the pair (I,m) is an allowed cutting point of T
if both of the two-rowed arrays in the obtained image are in L.

In Lemma 5.1 we will prove that every pair of two-rowed arrays in 7;&1 x TE,
has at least one allowed cutting point. This motivates the following definition:

Definition 4.4. Let T = (T1,T3) € T1; x T%, a pair of two-rowed arrays as before.
Consider all allowed cutting points (I,/m) of T. Select those with |l — /| minimal.
Among those, let (I,m) be the pair which comes first in the lexicographic order.

Then we call (I, m) the optimal cutting point of T.

Now we are ready to state our main theorem, which implies that Stanley’s con-
jecture is true, when R is a ladder determinantal ring cogenerated by a pair of
integers M:
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Theorem 4.5. Let L be a ladder region. Let T € T, x T,k,. Define I(T') to be the
pair of two-rowed arrays obtained by cutting T at its optimal cutting point. Then I

is well-defined and an injection from T, x T, into T,k x TE.

Corollary 4.6. The h-vector of the ladder determinantal ring cogenerated by M =
[uq | v1] is log-concave.

Proof of the corollary. By Theorem 3.1, the h-vector of this ring is equal to the
generating function Y, o |TE(A — E)|z* of two-rowed arrays bounded by A =
(0,u; — 1) and £ = (a — vy + 1,b) which are in the ladder region L. By the
preceding theorem, there is an injection from 7,%,(A — F) x T2, (A — E) into
TH(A s E) x THA v E), thus

1 TE (A= B)| | TE(Am B)| < |TEHA = B)[ .
]

We will split the proof of Theorem 4.5 in two parts. In Section 5 we show that the
mapping [ is well-defined, that is, for any pair of two-rowed arrays 17" € 776L+1 x T,
there is an allowed cutting point. Finally, in Section 6, we show that [ is indeed an
injection.

5 The mapping [ is well-defined

Lemma 5.1. Let L be a ladder region. Then for every pair of two-rowed arrays in
TE, x TE | there is an allowed cutting point (1, m).

For the proof of this lemma, we have to introduce some more notation: Let
(1. T) € Ty x Tk with Ty = (G 5, ey ) and Ty = (31 32 7 yiZt). We say that

br41

Inequality (fop) holds for an interval [c, d] if

L(aj) > yj-1, (top)

for j € [c,d]. Inequality (top) holds for an interval [c, d] if

L(aj) < yj-, (top)
for j € [c,d]. Similarly, Inequality (bottom) holds for an interval [c, d] if
L(x;_y) > bj, (bottom)

for j € [c,d]. Inequality (bottom) holds for an interval [c, d] if
L(z;_1) < by, (bottom)

for j € [c,d]. We say that any of these inequalities holds for a cutting point (I, m)
if it holds for the interval [l 4+ 1,m] if [ < m and for the interval [m + 1,1] if m < (.
Clearly, a cutting point ([, m) is allowed if and only if all of these inequalities hold
for it.

Most of the work is done by the following lemma:
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Lemma 5.2. Let T = (T1,T3) € TEy x Ty Ty = (b - brry) and Ty =
(i w2 9E=b). Let I and 1 be top cutting points, such that there is no top cutting
point in the closed interval [ + 1,1 — 1]. Similarly, let m and ™ be bottom cutting
points, such that there is no bottom cutting point in the closed interval [m~+1,m—1].

Then for both of the intervals [l + 1,1] and [m + 1,m],
e cither (top) or (bottom) hold,
e cither (top) or (bottom) hold,

either (top) or (top) hold,

either (bottom) or (bottom) hold.

Let i, lnaz, Mmin and Mopae be the minimal and mazimal top and bottom cutting
points. Then we have

e (top) and (bottom) hold for [2, max(l,in, Mmin)] and
e (top) and (bottom) hold for [min(lyax, Mmaz), k|-

Proof. Suppose that (fop) does not hold for the interval [ + 1,1]. We claim that in
that case there is an index j € [ + 1,1 — 1] such that a; < z;: For, by hypothesis
there is an index i € [[ + 1,1] such that L(a;) < y; 1. We have L(a;) < y; 1 <
L(x;_1) and because L is a weakly increasing function, a; < ;_,. It follows that
ai_1 < a; < xi_1 < x;. Thus, if i =1 we choose j =i — 1, otherwise j = i.

The same statement is true if (bottom) does not hold for the interval [[+1,1]: In
this case there must be an index i € [l + 1,1] such that L(z; 1) > b;. We conclude
that L(a;) < b; < L(x; 1) and thus a; < x; ;.

Next, we will use induction to prove that

a; < a (**)

and a1 <2

for I € [l + 1,1 —1]. We will first do an induction on [ to establish the claim for
le[jl—1]

We start the induction at [ = j: Above we already found that a; < ;. Therefore
we must have a;41 < x;_1, because otherwise j would satisfy (x) and hence were a
top cutting point.

Now suppose that (%) holds for a particular [ < [ —1. Then a1 < 2_; < 7141,
and, because there is no top cutting point at [ + 1, we have a;1» < x;.

Similarly, to establish (%) for [ € [[+1, j] we do a reverse induction on [. Suppose
that (#%) holds for a particular { > [ + 1. Then a; 1 < @41 < 71, and, because
there is no top cutting point at [ — 1, we have a; < x; 5.
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Thus we obtain
L(ap) > Z< vi_2) > Tlap) > by, and
L L(a iyt > by,

)
| >

which means that (bottom) holds for the interval [l + 1,1].
Furthermore,

L(ap1) < L(agio) < L(z) <y, and
L(a) < L(xi—2) < yi—2 < yi—1,

which means that (top) holds for the interval [l + 1,1].

Next we show that (fop) and (bottom) hold for the interval [2,[,,;,]: Assume that
either of these inequalities does not hold for the interval [2,,,;,] and that [2, ]
does not contain a top cutting point except l,,;,. Then the above reverse induction
implies that a; < a3 < w1, which means that 1 is a top cutting point. Thus, l,,;, =1
and the interval [2,l,,;,] is empty.

The other assertions are shown in a completely analogous fashion. O

We are now ready to establish Lemma 5.1:

Proof of Lemma 5.1. Let T = (T1,T5) € TL, x T,k,. By Lemma 4.2 there is at
least one cutting point ({,m) of T. Let Lnin, lmazs Mumin and Myq, be the minimal
and maximal top and bottom cutting points of T" as before.

If there is an index j which is a top and a bottom cutting point of 7', then —
trivially — (j, 7) is an allowed cutting point. Otherwise, we have to show that there
is a cutting point (I, m) for which (top), (top), (bottom), and (bottom) hold. Suppose
that this is not the case. o

For the inductive proof which follows, we have to introduce a convenient indexing
scheme for the sequence of top and bottom cutting points. Let

my o = max{m : m < ly, and m is a bottom cutting point},
m;o = max{m :m < l;_1; and m is a bottom cutting point} fori > 1,

and ;o = max{l: ! <m;; and [ is a top cutting point} for i > 1,

where m; ;41 is the bottom cutting point directly after m;;, and [; ;11 is the top
cutting point directly after [; ;. Furthermore, we set lo 1 = lyn.

More pictorially, we have the following sequence of top and bottom cutting points
for ¢ > 1:

<o < 11_171 < li_LQ < e K ll',() <My < Myg < -+ <Myip10 <+

If mypin > Lnin, then m; o does not exist, of course. Note that there are no bottom
cutting points between [; ; and [;4;, and there are no top cutting points between
mi1 and Mi41,0-
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Suppose first that M, < Lyin. By induction on i, we will show that (fop) and
(bottom) hold for the cutting points (l;_11,m;0), where i > 1. By Lemma 5.2 we
know that (fop) and (bottom) are satisfied for the cutting point (I, mi o), because
(Mo + 1, lyin] C [2, lmin]. It remains to perform the induction step, which we will
divide into five simple steps.

Step 1. (top) and (bottom) hold for the interval [m;p + 1,1;-11]. This is just a
restatement of the induction hypothesis, i.e., that (top) and (bottom) hold for the
Cutting point (li—l,la mivo).

Step 2. Bither (bottom) or (top) does not hold for the interval [m;o + 1,m;,].
Because of Step 1, not both of (bottom) and (top) can hold for (I;_11,m;p0), lest
this was an allowed cutting point. Thus either (bottom) or (top) does not hold for
[m;o+1,l;_10+1]. This interval is contained in [m; o+ 1, m; 1], thus the inequalities
(bottom) and (top) cannot hold on this interval either.

Step 3. (top) and (bottom) hold for [l;o + 1,m;1]. Suppose that (bottom) does
not hold for [m; o+ 1,m;,]. Then, by Lemma 5.2 we obtain that (fop) and (bottom)
hold for [m;o + 1,m; 1], because this interval contains no bottom cutting points
except m; ;. The same is true, if (top) does not hold for [m;¢ + 1,m;,]. Because
[lio + 1,m; ] is a subset of this interval, (fop) and (bottom) hold for the cutting
point (l;0,m; 1), or, equivalently, for the interval [l; o + 1, m;].

Step 4. FEither (bottom) or (top) does not hold for [l;o + 1,1;1]. Because of

Step 3, not both of (bottom) and (top) can hold for the cutting point (l; o, 1), nor
for the greater interval [l;0 + 1,1;1].

Step 5. (top) and (bottom) hold for [miy10 + 1,0;1]. The interval [I;o + 1,1; 4]
does not contain a top cutting point except [; 1, thus by Lemma 5.2 and Step 4 we
see that (fop) and (bottom) hold. Finally, because [m;i10 + 1,041] C [lio + 1,11],
(top) and (bottom) hold for the cutting point (I;1,m;410)-

If ;x> Myper, then we encounter a contradiction: Let r be such that m, o =
Mupaz-  We have just shown that (fop) and (bottom) hold for the cutting point
(l—11,myp). Furthermore, by Lemma 5.2, (bottom) and (top) hold for [m,., k]
and thus also for ([,_;1,m,p). Hence, this would be an allowed cutting point,
contradicting our hypothesis.

If lpae < Munga, let 7 be such that I, g = [ By the induction (Step 3) we
find that (top) and (bottom) hold for the cutting point (l.o,m, ). Again, because
of Lemma 5.2, we know that (bottom) and (top) holds for [/, o, k] and thus also for
(ly0,m;1). Hence, we had an allowed cutting?oint in this case also.

The case that m; > [y is completely analogous. O

6 The mapping [ is an injection

Lemma 6.1. The mapping I defined above is an injection.
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Proof. Suppose that I(T) = I(1") for T = (11,T3) and T" = (17, T3), such that T
and T" are elements of T, x Tk . Let (I,m) be the optimal cutting point of T,
and let (I',m’) be the optimal cutting point of 7".

Observe that we can assume min(l, m,{’,;m') = 1, because the elements of T’
and 7" with index less than or equal to this minimum retain their position in I(7T).
Likewise, we can assume that max(l, m,l',m’) = k.

Furthermore, we can assume that [ < [I’, otherwise we exchange the meaning of
T and T". Thus, we have to consider the following twelve situations:

1) 1=1 <1I' <m<m=k
2) 1=1 <1I' <m<m=
B) 1=1 <m <l <m=k
4) 1=1 <m<m <1 =
B) 1=1 <m <l <m=
6) 1=1 <m"<m< U =k
(7)) 1=m < I < U <m'=
B) 1=m < I <m' <1l =k
9 1=m<m <1 <1 =
(10) 1=m'< I < I <m=
(11) 1=m' < | <m < I =k
(12) 1=m'<m < | < I =k

We shall divide these twelve cases into two portions according to whether [ < m or
not.

A:1<m

In the Cases (1)—(6), (10) and (11) we have [ < m, thus the pair of two-rowed arrays
T =(T\,T5) € T, x T2, looks like

ay .. I 7 (g1
DL bo | bt -e- . bir
T Ty | X e Th_1
YL oo Ym—1 | YUm Ye_1

Ay e L 7 Tho1
Dl b | Ym Yr_1
T Ti—1 | L0 (7]
Y1 e Ym—1 | bm+1 ....... bk:+1

If [ = 1, then the top row of the second array in I(T) is (as, as, ..., agy1), if m =k,
then the bottom row of the first array in I(7) is (by, ba, ..., bg).
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Case (1), 1=1<I'<m<m'=k

Given that I(T) = I(T"), the pair 7' can be expressed in terms of the entries of T
as follows:

aq | T Ty—1 L0 L Ap+1

b1 ......................... bm | Ynm - Yp—1 bk-i—l (T’)
| a9 ay H Ll i e Th—1

YL oo Ym—1 | b1 by

The vertical dots indicate the cut (I',m’) which results in I(7"). We show that the
cutting point (I,m) = (1,m), indicated above by the vertical lines, is in fact an
allowed cutting point for 7”: Cutting at (1, m) yields

ay | a ay Ty oo Tm—1  oveveee e Tl—1
by b b b
1 : m | m+1 k (]—(T/))
| T Ty—1 & Qpgq [0 Af41
G Ym—1 | Ym Yk—1 bk—i—l

Note, that this is the same pair of two-rowed arrays we obtain by cutting 7" at
(I';m'). We have to check that the pair of two-rowed arrays (/(7”)) is in the ladder
region.

Clearly,

(G2, bz% (G37 b3>7 Sy (al’a bl') and (901, y1>7 (G27 52% sy (331'71, yl'q)

are in the ladder region, because these pairs appear also in 7. Furthermore, the
pairs

(90% bz'+1), (331'+1, bl'+2), . (@“mq, bm)

and (al'-i-lu yl’)7 (al’+27 yl’+1)7 v (am7 ym—l)

appear in I(T') and are therefore in the ladder region, too. All the other pairs, i.e.,

(ah bl) and (xm7 bm—|—1)7 (xm—l—h bm—|—2)7 R (xk—la bk)7

(@m+1sYm)s (@ms2, Yms1), - - -5 (Qky Yk—1) and (ag41, bptr),

are unaffected by the cut and appear in 7".

Thus we have that (I,m) and (I',m') are allowed cuts for 7" and T7". We required
that (I,m) is optimal for 7" and that (I',m’) is optimal for 7", therefore we must
have [ =" and m = m/.

In all the other cases the reasoning is very similar. Thus we only print the pairs
of two-rowed arrays 7" and I(7") and leave it to the reader to check that I(7”) is in
the ladder region.
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Case (2),1=1<I'<m'<m=k

The pair T" can be expressed in terms of the entries of T as follows:

ay | ry .. Tp—y L0 L (7]

bl .......................... bml Ym! - Yk—1 | bk+1
| a9 ay H LI e e Tk—1

G Ym'—1 bm’-i—l bk |

ay | a9 ayr Ty ... T/ =1 veeevnn Th—1
b1 .......................... bml Ym/ Yk—1 |

| T Tyr—1 ap 41 Am/ v e e Aft1
0 Ym'—1 bm/+1 bk | bk+1

Case (3),1=1<m<lI'<m’'=k

The pair 7" can be expressed in terms of the entries of 1" as follows:

aq | 0 Ty—1 AP 41 v eeee e e Ap+1
b1 ......... bm | Um oo e Yk—1 bk+1
| [0 ayr Ty Thp—1

U1 T I by

ay | A2 o e ay Ty Tl—1
by el Do | Bt e br
| T Tyr—1 (€ L Ag+1
U Y1 | Um oo Ye1 § bpy1

(17)

(1(17))

(1(17))

80



Case (4),1=1<m<m'<l'=k

The pair T" can be expressed in terms of the entries of T" as follows:

ay | T Tl—1 i Ag+1

bl ......... bm | Ym Ym' -1 i bm’+1 ........... bk}+1 (T’)
| Qg o a

W Ym—1 | bt R T Yk—1

Cutting at (I, m) yields

I 2 ap

b1 ......... bm | bm+1 ..... bml Ym/ e Yk—1 ([(T’))
| 3 Tl—1 A+1

Y1 Ym—1 | Ym Ym/ -1 bm/+1 ......... bk+1

Case (5),1=1<m'<I'<m=k

The pair 7" can be expressed in terms of the entries of 1" as follows:

aq | 0 2 Tyr—1 al/+1 .......... ak+1

b1 ......... bm/ Uil oveee Yk—1 | bk+1 (T’)
| A2 e e e ap i Ty Tk—-1

U1 Ym' -1 bm’+1 .................... bk |

Cutting at (I, m) yields

(@51 | [0 ap Xy Tk—-1

b1 ......... bm/ Ym! oo Yr—1 | (](TI))
| 0 P Tr—1 (07 Ag+1

U1 Ym'—1 bm’+1 .................... bk | bk;+1
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Case (6),1=1<m'<m<1l=k

The pair T" can be expressed in terms of the entries of T" as follows:

ay | 1 Tp—1 i A1

by ... by ! me1 | Ol e b

1 Y Ym—1 | +1 k+1 (T’)
| Qg o a

Y1 Ym'—1 bm’+1 b, | Ym Yk—1

N 2 S ay,

by oo by ' _ .. _

1 m Ym Ym—1 | Ym : Yk-1 ([(T/))
| 3 Tp—1 i Q41

U1 Ym/ -1 bm/+1 bm | bm+1 ......... bk+1

Case (10), 1=m'<I<I'<m=k

The pair 7" can be expressed in terms of the entries of 1" as follows:

(0 N a | ry .. Ty AP 41 oo e e Ap+1

b1 G Yk—1 | bk—i—l (T’)
T Ty | apg ay i Ty Tp—1

Dy o b |

(0 ay | ar4+1 ay Ty Tl—1
DL YL oo Yk-1 | (1(1")
T T | @y Tp_1iargr oo (k+1
By e b, | e
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Case (11),1=m'<1<m<Il'=k

The pair T" can be expressed in terms of the entries of T as follows:

A1 e ap lap oo Tpo1§ Ay

DLiys oo Y1 | b1 oeeeenen. bri1 (1)
xy Ty | Qg e ay

bg ................. bm | Ym Yk—1

Ay o ap | @y oo ap i

b1 Y1 veee e Ym—1 | Yn - Yk—1 (I(T’))
i I T 7 A Tp_1} Apyt

Dy o I biy1

B:m<l1

In the Cases (7)—(9) and (12) we have m < [, thus the pair of two-rowed arrays
T =(T',T5) € TE, x TE, looks like

7 R ap | a1 e i1
by e B | Bkl weeeeeeeee e b
B Ti—1 | x Tl—1
T A P Yk—1-

7 ap | x Tho1
b1 ......... bm | YUm  veere e Yk—1
10 Ti—1 | Ar41 oo v e Af41
U1 Ym—1 | bm-l—l ...................... bk+1
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Case (7),1=m <1<V <m’'=k

The pair T" can be expressed in terms of the entries of T" as follows:

A1 e a, | x Ty 1 5APL] e i1

b1 | 0 Ye—1 bk+1 (T’)
X Ty | ar ayp i Ty Tk—1
| Do o by,

[0 ay | ar4+1 ayr Ty Tl—1
b | by oo by
- : (1(17))
1 Ti—1 | x Hy T R ¢ ) T Af41
| G Yk—1 bk—i—l

Case (8),1=m<1<m'<Il'=k

The pair 7" can be expressed in terms of the entries of 1" as follows:

Ay .. N 7 Tp_1 i Apgt

b1 | 0 Ym/ -1 bm/+1 ........... bk—i—l (T’)
T Tpq | @ ay
| bz ................. bml 0 Y A Yr—1

b1 | b2 .................... bm’ Ym' -+ Yp—1 -
- . (1))
1 Ti—1 | Y Tp—1 i A1
| Y1 oo Ym/—1 bm’+1 ......... bk+1
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Case (9),1=m<m'<1<I'=k

The pair T" can be expressed in terms of the entries of T as follows:

7 S a |x oo Tpo1 i Ay
bl | U1 Ym'—1 bm/+1 .......................... bk+1 (T’)
1 R x| ap a

| bg bml 0 Yk—1

A1 e ap | ajq ap i
bi | by ... by P Umy e -
IR R R Ti—1 | x Lp—1 i Q41
| U1 Ym/—1 bm’—l—l ......................... bk+1

Case (12), 1=m'<m <1<l =k

The pair 7" can be expressed in terms of the entries of 1" as follows:

L R a |x oo Tp_1 i Qpgt

b1 Y1 Ym—1 | bm—i—l .......................... bk+1 (T’)
772 E 1 | ap ay,

by b | YUm e Ye_1

S ap | apq ap i
b1 Y - - Ym—1 | Ym  vveee e Ye—1 (](Tl))
B Ti—1 | x Tr—1 : Ap+1
By o D | Bt e b1
O
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